Ran Zhou , Ze Wang , Jiuru Lu , Yu Zhu , Chuxiong Hu
{"title":"Ultraprecision multi-axis CARIC control strategy with application to a nano-accuracy air-bearing motion stage","authors":"Ran Zhou , Ze Wang , Jiuru Lu , Yu Zhu , Chuxiong Hu","doi":"10.1016/j.isatra.2025.01.020","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-axis contouring control is crucial for ultraprecision manufacturing industries, contributing to meeting the ever-increasingly stringent performance requirements. In this article, a novel contouring adaptive real-time iterative compensation (CARIC) method is proposed to achieve extreme multi-axis contouring accuracy, remarkable trajectory generalization, disturbance rejection, and parametric adaptation simultaneously. Specifically, control actions generated by CARIC consist of robust feedback, adaptive feedforward, and online trajectory compensation components. Robust feedback and adaptive feedforward terms initially stabilize single-axis closed-loop control systems and adapt to parameter variations. An online contouring error prediction model subsequently captures upcoming contouring errors in advance, enabling the iterative calculation of optimal online trajectory compensation signals at each sampling instant during real-time motion. This mechanism proactively suppresses potential contouring errors before their occurrence. Comparative simulations and experiments demonstrate that the proposed CARIC method reaches the accuracy limit previously attainable only by iterative learning control (ILC) while enhancing trajectory generalization, disturbance rejection, and parametric adaptation. Notably, practical experiments on a nano-accuracy air-bearing motion stage showcase consistent 7-nm-level accuracy across various 100-mm stroke contouring tasks even under varying contours, payloads, and disturbances. Owing to these advantages, CARIC offers promising potential to enhance ultraprecision manufacturing performance through advanced motion control techniques.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"158 ","pages":"Pages 572-585"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000229","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-axis contouring control is crucial for ultraprecision manufacturing industries, contributing to meeting the ever-increasingly stringent performance requirements. In this article, a novel contouring adaptive real-time iterative compensation (CARIC) method is proposed to achieve extreme multi-axis contouring accuracy, remarkable trajectory generalization, disturbance rejection, and parametric adaptation simultaneously. Specifically, control actions generated by CARIC consist of robust feedback, adaptive feedforward, and online trajectory compensation components. Robust feedback and adaptive feedforward terms initially stabilize single-axis closed-loop control systems and adapt to parameter variations. An online contouring error prediction model subsequently captures upcoming contouring errors in advance, enabling the iterative calculation of optimal online trajectory compensation signals at each sampling instant during real-time motion. This mechanism proactively suppresses potential contouring errors before their occurrence. Comparative simulations and experiments demonstrate that the proposed CARIC method reaches the accuracy limit previously attainable only by iterative learning control (ILC) while enhancing trajectory generalization, disturbance rejection, and parametric adaptation. Notably, practical experiments on a nano-accuracy air-bearing motion stage showcase consistent 7-nm-level accuracy across various 100-mm stroke contouring tasks even under varying contours, payloads, and disturbances. Owing to these advantages, CARIC offers promising potential to enhance ultraprecision manufacturing performance through advanced motion control techniques.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.