Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization.

Qiangya Li, Tao Liu, Jing Na, Chao Shang, Yonghong Tan, Qing-Guo Wang
{"title":"Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization.","authors":"Qiangya Li, Tao Liu, Jing Na, Chao Shang, Yonghong Tan, Qing-Guo Wang","doi":"10.1016/j.isatra.2025.01.025","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively. To guarantee consistent estimation on these parameters, an auxiliary block model is designed to predict the inner unmeasurable variables of the Wiener-Hammerstein system for computational iteration. Furthermore, two adaptive forgetting factors are designed to accelerate the convergence rates on estimating both coupled and uncoupled parameters. To overcome the issue of initial value sensitivity involved with the traditional recursive least-squares based algorithms for parameter estimation, a particle swarm optimization (PSO) algorithm based on two different excitation signals is given for initial value optimization of the proposed recursive identification algorithm. Meanwhile, the convergence property of the proposed algorithm is clarified with a proof. Finally, an illustrative example and experiments on a micro-positioning stage are performed to validate the merit of the proposed method.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.01.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively. To guarantee consistent estimation on these parameters, an auxiliary block model is designed to predict the inner unmeasurable variables of the Wiener-Hammerstein system for computational iteration. Furthermore, two adaptive forgetting factors are designed to accelerate the convergence rates on estimating both coupled and uncoupled parameters. To overcome the issue of initial value sensitivity involved with the traditional recursive least-squares based algorithms for parameter estimation, a particle swarm optimization (PSO) algorithm based on two different excitation signals is given for initial value optimization of the proposed recursive identification algorithm. Meanwhile, the convergence property of the proposed algorithm is clarified with a proof. Finally, an illustrative example and experiments on a micro-positioning stage are performed to validate the merit of the proposed method.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信