{"title":"Investigation of <i>Aframomum melegueta</i> compounds as ERK5 inhibitor related to breast cancer via molecular docking and dynamic simulation.","authors":"Paul Olamide Ottu, Olorunfemi Oyewole Babalola, Cecilia Oluwamodupe, Ayodeji Folasade Oluwatobiloba, Idayat Oyinkansola Kehinde, Olufemi Adebisi Akinola, Sulyman Olalekan Ibrahim, Olusola Olalekan Elekofehinti","doi":"10.1007/s40203-025-00304-w","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a global health challenge, with rising cases predicted in the coming decades. The complexity of breast cancer treatment arises from its complex nature, often involving multiple therapeutic strategies. One promising approach is targeting the ERK5 pathway, a key regulator in cancer cell proliferation and survival. In this study, we explored the anticancer potential of bioactive compounds from <i>Aframomum melegueta</i>, a plant traditionally used in West African medicine. The 3D structure of ERK5 (PDB ID: 4B99) was prepared and optimized using the Schrödinger Protein Preparation Wizard. Six phytochemicals from <i>Aframomum melegueta</i> were screened for their binding affinities to ERK5 using GlideXP docking. Dihydrogingerenone A,1-(3,4-dihydroxy-5-methoxyphenyl)-7-(3,4-dihydroxyphenyl) heptane-3,5-diyldiacetate and Dihydrogingerenone C emerged as the lead compound, demonstrating a high docking score of - 9.659 kcal/mol, - 9.383 kcal/mol, and - 8.264 kcal/mol compared to standard anticancer drugs like Docetaxel (- 4.175 kcal/mol) and Temozolomide (- 5.443 kcal/mol). Post-docking analyses using MM-GBSA free energy calculations confirmed the compound's high binding stability, with van der Waals interactions and hydrogen bonding at critical residues such as Met140 playing a significant role. Pharmacokinetic profiling using ADME analysis showed that our compounds exhibited favorable drug-likeness properties, adhering to Lipinski's Rule of Five without violations. QSAR modeling and molecular dynamics (MD) simulations further validated its pharmacological potential. These findings suggest that <i>Aframomum melegueta</i> contains bioactive compounds with strong potential as ERK5 inhibitors, offering a novel approach to breast cancer treatment.</p><p><strong>Graphical abstract: </strong>The molecular docking study of Dihydrogingerenone A, 1-(3, 4-dihydroxy-5-methoxyphenyl)-7-(3, 4-dihydroxyphenyl) heptane-3, 5-diyldiacetate, and Dihydrogingerenone C from <i>Aframomum melegueta</i> as effective breast cancer treatment.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00304-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer remains a global health challenge, with rising cases predicted in the coming decades. The complexity of breast cancer treatment arises from its complex nature, often involving multiple therapeutic strategies. One promising approach is targeting the ERK5 pathway, a key regulator in cancer cell proliferation and survival. In this study, we explored the anticancer potential of bioactive compounds from Aframomum melegueta, a plant traditionally used in West African medicine. The 3D structure of ERK5 (PDB ID: 4B99) was prepared and optimized using the Schrödinger Protein Preparation Wizard. Six phytochemicals from Aframomum melegueta were screened for their binding affinities to ERK5 using GlideXP docking. Dihydrogingerenone A,1-(3,4-dihydroxy-5-methoxyphenyl)-7-(3,4-dihydroxyphenyl) heptane-3,5-diyldiacetate and Dihydrogingerenone C emerged as the lead compound, demonstrating a high docking score of - 9.659 kcal/mol, - 9.383 kcal/mol, and - 8.264 kcal/mol compared to standard anticancer drugs like Docetaxel (- 4.175 kcal/mol) and Temozolomide (- 5.443 kcal/mol). Post-docking analyses using MM-GBSA free energy calculations confirmed the compound's high binding stability, with van der Waals interactions and hydrogen bonding at critical residues such as Met140 playing a significant role. Pharmacokinetic profiling using ADME analysis showed that our compounds exhibited favorable drug-likeness properties, adhering to Lipinski's Rule of Five without violations. QSAR modeling and molecular dynamics (MD) simulations further validated its pharmacological potential. These findings suggest that Aframomum melegueta contains bioactive compounds with strong potential as ERK5 inhibitors, offering a novel approach to breast cancer treatment.
Graphical abstract: The molecular docking study of Dihydrogingerenone A, 1-(3, 4-dihydroxy-5-methoxyphenyl)-7-(3, 4-dihydroxyphenyl) heptane-3, 5-diyldiacetate, and Dihydrogingerenone C from Aframomum melegueta as effective breast cancer treatment.