Gesture recognition from surface electromyography signals based on the SE-DenseNet network.

Ying Xiang, Wei Zheng, Jiajia Tang, You Dong, Yuhao Pang
{"title":"Gesture recognition from surface electromyography signals based on the SE-DenseNet network.","authors":"Ying Xiang, Wei Zheng, Jiajia Tang, You Dong, Yuhao Pang","doi":"10.1515/bmt-2024-0282","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.</p><p><strong>Methods: </strong>This paper proposes a fusion model of Squeeze-and-Excitation Networks (SE) and DenseNet, inserting attention mechanism between DenseBlock and Transition to focus on the most important information, improving feature representation ability, and effectively solving the problem of gradient vanishing.</p><p><strong>Results: </strong>This proposed method was tested on the electromyographic gesture datasets NinaPro DB2 and DB4, achieving accuracies of 85.93 and 82.39 % respectively. Through ablation experiments, it was found that the method based on DenseNet-101 as the backbone model produced the best results.</p><p><strong>Conclusions: </strong>Compared with existing models, this proposed method has better robustness and generalizability in gesture recognition, providing new ideas for the development of sEMG signal gesture recognition applications in the future.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.

Methods: This paper proposes a fusion model of Squeeze-and-Excitation Networks (SE) and DenseNet, inserting attention mechanism between DenseBlock and Transition to focus on the most important information, improving feature representation ability, and effectively solving the problem of gradient vanishing.

Results: This proposed method was tested on the electromyographic gesture datasets NinaPro DB2 and DB4, achieving accuracies of 85.93 and 82.39 % respectively. Through ablation experiments, it was found that the method based on DenseNet-101 as the backbone model produced the best results.

Conclusions: Compared with existing models, this proposed method has better robustness and generalizability in gesture recognition, providing new ideas for the development of sEMG signal gesture recognition applications in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信