{"title":"The modulation of low molecular weight sulfur compounds levels in visceral adipose tissue of TLR2-deficient mice on a high-fat diet","authors":"Patrycja Bronowicka-Adamska , Dominika Szlęzak , Anna Bentke-Imiolek , Kinga Kaszuba , Monika Majewska-Szczepanik","doi":"10.1016/j.biochi.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (H<sub>2</sub>S) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.</div><div>This study investigates the impact of a high-fat diet (HFD) on low molecular weight sulfur compounds in the visceral adipose tissue (VAT) of C57BL/6 and TLR2-deficient mice. It focuses on key enzymes involved in H<sub>2</sub>S metabolism: cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CGL), 3-mercaptopyruvate sulfurtransferase (MPST), and thiosulfate sulfurtransferase (TST).</div><div>In C57BL/6 mice on HFD, MPST activity decreased, while CBS level increased, potentially compensating for H<sub>2</sub>S production. In contrast, TLR2-deficient mice on HFD exhibited higher MPST activity but reduced level of CBS and CGL activity, suggesting that TLR2 deficiency mitigates HFD-induced changes in sulfur metabolism. TST activity was lower in TLR2-deficient mice, indicating an independent regulatory role of TLR2 in TST activity. Elevated oxidative stress, reflected by increased glutathione levels, was observed in wild-type mice. Interestingly, cysteine and cystine were detectable only in the VAT of the C57BL/6 ND group and were absent in all other groups. The capacity for hydrogen sulfide production in tissues from TLR2−/−B6 HFD group was significantly lower than in the C57BL/6 HFD group.</div><div>In conclusion, TLR2 modulates sulfur metabolism, oxidative stress, and inflammation in obesity. TLR2 deficiency disrupts H<sub>2</sub>S production and redox balance, potentially contributing to metabolic dysfunction, highlighting TLR2 as a potential therapeutic target for obesity-related metabolic disorders.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 66-73"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908425000197","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (H2S) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.
This study investigates the impact of a high-fat diet (HFD) on low molecular weight sulfur compounds in the visceral adipose tissue (VAT) of C57BL/6 and TLR2-deficient mice. It focuses on key enzymes involved in H2S metabolism: cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CGL), 3-mercaptopyruvate sulfurtransferase (MPST), and thiosulfate sulfurtransferase (TST).
In C57BL/6 mice on HFD, MPST activity decreased, while CBS level increased, potentially compensating for H2S production. In contrast, TLR2-deficient mice on HFD exhibited higher MPST activity but reduced level of CBS and CGL activity, suggesting that TLR2 deficiency mitigates HFD-induced changes in sulfur metabolism. TST activity was lower in TLR2-deficient mice, indicating an independent regulatory role of TLR2 in TST activity. Elevated oxidative stress, reflected by increased glutathione levels, was observed in wild-type mice. Interestingly, cysteine and cystine were detectable only in the VAT of the C57BL/6 ND group and were absent in all other groups. The capacity for hydrogen sulfide production in tissues from TLR2−/−B6 HFD group was significantly lower than in the C57BL/6 HFD group.
In conclusion, TLR2 modulates sulfur metabolism, oxidative stress, and inflammation in obesity. TLR2 deficiency disrupts H2S production and redox balance, potentially contributing to metabolic dysfunction, highlighting TLR2 as a potential therapeutic target for obesity-related metabolic disorders.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.