Green synthesis of silica-coated gold nanoparticles employing femtosecond laser, solid targets, and water

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. G. P. Machado, M. P. Raele, E. Jimenez-Villar, W. de Rossi
{"title":"Green synthesis of silica-coated gold nanoparticles employing femtosecond laser, solid targets, and water","authors":"N. G. P. Machado,&nbsp;M. P. Raele,&nbsp;E. Jimenez-Villar,&nbsp;W. de Rossi","doi":"10.1186/s11671-024-04141-2","DOIUrl":null,"url":null,"abstract":"<div><p>Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications. This study introduces a novel approach for synthesizing silica-coated gold nanoparticles (AuNP@SiO₂) using femtosecond laser ablation in water, eliminating the need for chemical reagents. The process involves three key laser-based steps: Si ablation, SiNP@SiO₂ fragmentation, and Au ablation, all conducted in a liquid environment. The resulting AuNP@SiO₂ were characterized using transmission electron microscopy (TEM), UV–Vis absorption spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential measurements. The results demonstrated that the AuNP@SiO₂ nanoparticles exhibit high colloidal stability, with a notably negative zeta potential of (-72.0 ± 0.3) mV, effectively preventing particle aggregation. TEM analysis confirmed predominantly spherical nanoparticles with an average diameter of (15.87 ± 0.70) nm, encapsulated by a SiO₂ layer ranging from 1 to 3 nm in thickness. The synthesis approach produced nanoparticles with an average size distribution below 35 nm. This green synthesis method not only produces stable and well-characterized AuNP@SiO₂ nanoparticles but also represents a significant step towards more sustainable nanomaterial production, with promising implications for biomedical applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04141-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications. This study introduces a novel approach for synthesizing silica-coated gold nanoparticles (AuNP@SiO₂) using femtosecond laser ablation in water, eliminating the need for chemical reagents. The process involves three key laser-based steps: Si ablation, SiNP@SiO₂ fragmentation, and Au ablation, all conducted in a liquid environment. The resulting AuNP@SiO₂ were characterized using transmission electron microscopy (TEM), UV–Vis absorption spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential measurements. The results demonstrated that the AuNP@SiO₂ nanoparticles exhibit high colloidal stability, with a notably negative zeta potential of (-72.0 ± 0.3) mV, effectively preventing particle aggregation. TEM analysis confirmed predominantly spherical nanoparticles with an average diameter of (15.87 ± 0.70) nm, encapsulated by a SiO₂ layer ranging from 1 to 3 nm in thickness. The synthesis approach produced nanoparticles with an average size distribution below 35 nm. This green synthesis method not only produces stable and well-characterized AuNP@SiO₂ nanoparticles but also represents a significant step towards more sustainable nanomaterial production, with promising implications for biomedical applications.

利用飞秒激光、固体靶和水绿色合成二氧化硅包覆金纳米粒子。
金纳米颗粒因其独特的性能在生物医学领域得到了广泛的应用。然而,传统的合成方法会产生污染物,导致细胞毒性和损害纳米材料的生物相容性。因此,绿色合成方法对于生产纯净且具有生物相容性的纳米颗粒至关重要,从而确保其在生物医学应用中的有效性。本研究介绍了一种利用飞秒激光烧蚀在水中合成二氧化硅涂层金纳米粒子(AuNP@SiO₂)的新方法,消除了对化学试剂的需要。该过程包括三个关键的激光步骤:Si烧蚀、SiNP@SiO₂破碎和Au烧蚀,全部在液体环境中进行。通过透射电子显微镜(TEM)、紫外-可见吸收光谱、动态光散射(DLS)、x射线衍射(XRD)和zeta电位测量对所得AuNP@SiO₂进行了表征。结果表明,AuNP@SiO₂纳米颗粒具有较高的胶体稳定性,zeta电位显著为负(-72.0±0.3)mV,可有效防止颗粒聚集。TEM分析证实,纳米颗粒主要为球形,平均直径为(15.87±0.70)nm,由厚度为1 ~ 3 nm的SiO₂层包裹。该合成方法制备的纳米颗粒平均尺寸分布在35 nm以下。这种绿色合成方法不仅可以产生稳定且表征良好的AuNP@SiO纳米粒子,而且还代表了向更可持续的纳米材料生产迈出的重要一步,对生物医学应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信