Intelligent shipping: integrating autonomous maneuvering and maritime knowledge in the Singapore-Rotterdam Corridor.

Liang Zhao, Mengqiao Xu, Lei Liu, Yong Bai, Mingyang Zhang, Ran Yan
{"title":"Intelligent shipping: integrating autonomous maneuvering and maritime knowledge in the Singapore-Rotterdam Corridor.","authors":"Liang Zhao, Mengqiao Xu, Lei Liu, Yong Bai, Mingyang Zhang, Ran Yan","doi":"10.1038/s44172-025-00346-0","DOIUrl":null,"url":null,"abstract":"<p><p>Designing safe and reliable routes is the core of intelligent shipping. However, existing methods for industrial use are inadequate, primarily due to the lack of considering company preferences and ship maneuvering characteristics. To address these challenges, here we introduce a methodological framework that integrates maritime knowledge and autonomous maneuvering model. Based on historical maritime big data, the framework offers customized routes for companies with specific routing preferences. The autonomous maneuvering model then evaluates the safety and reliability of the routes by considering ship motion characteristics and ocean hydrodynamics. We validate its effectiveness on the world's longest Green and Digital Shipping Corridor between Singapore and Rotterdam. Results demonstrate that our model can provide customized route design for companies and enhance safety for shipping. The framework could serve as a fundamental structure to build a fully digitalized platform for route customization and evaluation for global shipping, optimizing operational decision-making and safety assurance.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00346-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing safe and reliable routes is the core of intelligent shipping. However, existing methods for industrial use are inadequate, primarily due to the lack of considering company preferences and ship maneuvering characteristics. To address these challenges, here we introduce a methodological framework that integrates maritime knowledge and autonomous maneuvering model. Based on historical maritime big data, the framework offers customized routes for companies with specific routing preferences. The autonomous maneuvering model then evaluates the safety and reliability of the routes by considering ship motion characteristics and ocean hydrodynamics. We validate its effectiveness on the world's longest Green and Digital Shipping Corridor between Singapore and Rotterdam. Results demonstrate that our model can provide customized route design for companies and enhance safety for shipping. The framework could serve as a fundamental structure to build a fully digitalized platform for route customization and evaluation for global shipping, optimizing operational decision-making and safety assurance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信