Intestine-derived fibroblast growth factor 19 alleviates lipopolysaccharide-induced liver injury by regulating bile acid homeostasis and directly improving oxidative stress

Xiaomeng Tang , Jingjing Ning , Yilin Zhao , Shuyun Feng , Lujing Shao , Tiantian Liu , Huijie Miao , Yucai Zhang , Chunxia Wang
{"title":"Intestine-derived fibroblast growth factor 19 alleviates lipopolysaccharide-induced liver injury by regulating bile acid homeostasis and directly improving oxidative stress","authors":"Xiaomeng Tang ,&nbsp;Jingjing Ning ,&nbsp;Yilin Zhao ,&nbsp;Shuyun Feng ,&nbsp;Lujing Shao ,&nbsp;Tiantian Liu ,&nbsp;Huijie Miao ,&nbsp;Yucai Zhang ,&nbsp;Chunxia Wang","doi":"10.1016/j.jointm.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.</div></div><div><h3>Methods</h3><div>We conducted a case–control study that included 58 pediatric patients aged from 1 month to 14-years-old diagnosed with sepsis at Shanghai Children's Hospital from January to December 2018 and 30 healthy individuals. The serum FGF19 levels of these patients with sepsis were analyzed and compared with those of healthy controls. Recombinant human FGF19 was intravenously injected in mice once a day for 7 days at a dose of 0.1 mg/kg body weight before lipopolysaccharide (LPS) treatment. Liver bile acid profiles and the gene expression involved in bile acid homeostasis were investigated in the mice groups. Metabolomic data were further integrated and analyzed using Ingenuity Pathways Analysis (IPA) software. In the <em>in vitro</em> analysis using HepG2 cells, the influence of FGF19 pretreatment on reactive oxygen species (ROS) production and mitochondrial dysfunction was analyzed. Compound C (CC), an inhibitor of AMP-activated protein kinase (AMPK) activation, was used to confirm the roles of AMPK activation in FGF19-mediated hepatoprotective effects.</div></div><div><h3>Results</h3><div>Serum FGF19 levels were significantly lower in children with sepsis than in healthy controls (115 pg/mL <em>vs</em>. 79 pg/mL, <em>P</em>=0.03). Pre-administration of recombinant human FGF19 alleviated LPS-induced acute liver injury (ALI) and improved LPS-induced cholestasis in mice. Moreover, FGF19 directly reversed LPS-induced intracellular ROS generation and LPS-decreased mitochondrial membrane potential <em>in vitro</em> and <em>in vivo</em>, resulting in hepatoprotection against LPS-induced apoptosis. More importantly, the inhibition of AMPK activity partially blocked the protective effects of FGF19 against LPS-induced oxidative stress and mitochondrial dysfunction.</div></div><div><h3>Conclusions</h3><div>Intestine-derived FGF19 alleviates LPS-induced ALI via improving bile acid homeostasis and directly suppressing ROS production via activating the AMPK signaling pathway.</div></div>","PeriodicalId":73799,"journal":{"name":"Journal of intensive medicine","volume":"5 1","pages":"Pages 79-88"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of intensive medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667100X24000768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

Methods

We conducted a case–control study that included 58 pediatric patients aged from 1 month to 14-years-old diagnosed with sepsis at Shanghai Children's Hospital from January to December 2018 and 30 healthy individuals. The serum FGF19 levels of these patients with sepsis were analyzed and compared with those of healthy controls. Recombinant human FGF19 was intravenously injected in mice once a day for 7 days at a dose of 0.1 mg/kg body weight before lipopolysaccharide (LPS) treatment. Liver bile acid profiles and the gene expression involved in bile acid homeostasis were investigated in the mice groups. Metabolomic data were further integrated and analyzed using Ingenuity Pathways Analysis (IPA) software. In the in vitro analysis using HepG2 cells, the influence of FGF19 pretreatment on reactive oxygen species (ROS) production and mitochondrial dysfunction was analyzed. Compound C (CC), an inhibitor of AMP-activated protein kinase (AMPK) activation, was used to confirm the roles of AMPK activation in FGF19-mediated hepatoprotective effects.

Results

Serum FGF19 levels were significantly lower in children with sepsis than in healthy controls (115 pg/mL vs. 79 pg/mL, P=0.03). Pre-administration of recombinant human FGF19 alleviated LPS-induced acute liver injury (ALI) and improved LPS-induced cholestasis in mice. Moreover, FGF19 directly reversed LPS-induced intracellular ROS generation and LPS-decreased mitochondrial membrane potential in vitro and in vivo, resulting in hepatoprotection against LPS-induced apoptosis. More importantly, the inhibition of AMPK activity partially blocked the protective effects of FGF19 against LPS-induced oxidative stress and mitochondrial dysfunction.

Conclusions

Intestine-derived FGF19 alleviates LPS-induced ALI via improving bile acid homeostasis and directly suppressing ROS production via activating the AMPK signaling pathway.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of intensive medicine
Journal of intensive medicine Critical Care and Intensive Care Medicine
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
58 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信