Revolutionising oral organoids with artificial intelligence.

Biomaterials Translational Pub Date : 2024-11-15 eCollection Date: 2024-01-01 DOI:10.12336/biomatertransl.2024.04.004
Jiawei Yang, Nicholas G Fischer, Zhou Ye
{"title":"Revolutionising oral organoids with artificial intelligence.","authors":"Jiawei Yang, Nicholas G Fischer, Zhou Ye","doi":"10.12336/biomatertransl.2024.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>The convergence of organoid technology and artificial intelligence (AI) is poised to revolutionise oral healthcare. Organoids - three-dimensional structures derived from human tissues - offer invaluable insights into the complex biology of diseases, allowing researchers to effectively study disease mechanisms and test therapeutic interventions in environments that closely mimic in vivo conditions. In this review, we first present the historical development of organoids and delve into the current types of oral organoids, focusing on their use in disease models, regeneration and microbiome intervention. We then compare single-source and multi-lineage oral organoids and assess the latest progress in bioprinted, vascularised and neural-integrated organoids. In the next part of the review, we highlight significant advancements in AI, emphasising how AI algorithms may potentially promote organoid development for early disease detection and diagnosis, personalised treatment, disease prediction and drug screening. However, our main finding is the identification of remaining challenges, such as data integration and the critical need for rigorous validation of AI algorithms to ensure their clinical reliability. Our main viewpoint is that current AI-enabled oral organoids are still limited in applications but, as we look to the future, we offer insights into the potential transformation of AI-integrated oral organoids in oral disease diagnosis, oral microbial interactions and drug discoveries. By synthesising these components, this review aims to provide a comprehensive perspective on the current state and future implications of AI-enabled oral organoids, emphasising their role in advancing oral healthcare and improving patient outcomes.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"5 4","pages":"372-389"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2024.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The convergence of organoid technology and artificial intelligence (AI) is poised to revolutionise oral healthcare. Organoids - three-dimensional structures derived from human tissues - offer invaluable insights into the complex biology of diseases, allowing researchers to effectively study disease mechanisms and test therapeutic interventions in environments that closely mimic in vivo conditions. In this review, we first present the historical development of organoids and delve into the current types of oral organoids, focusing on their use in disease models, regeneration and microbiome intervention. We then compare single-source and multi-lineage oral organoids and assess the latest progress in bioprinted, vascularised and neural-integrated organoids. In the next part of the review, we highlight significant advancements in AI, emphasising how AI algorithms may potentially promote organoid development for early disease detection and diagnosis, personalised treatment, disease prediction and drug screening. However, our main finding is the identification of remaining challenges, such as data integration and the critical need for rigorous validation of AI algorithms to ensure their clinical reliability. Our main viewpoint is that current AI-enabled oral organoids are still limited in applications but, as we look to the future, we offer insights into the potential transformation of AI-integrated oral organoids in oral disease diagnosis, oral microbial interactions and drug discoveries. By synthesising these components, this review aims to provide a comprehensive perspective on the current state and future implications of AI-enabled oral organoids, emphasising their role in advancing oral healthcare and improving patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信