Hepatic TRPC3 loss contributes to chronic alcohol consumption-induced hepatic steatosis and liver injury in mice.

Life metabolism Pub Date : 2023-12-18 eCollection Date: 2024-02-01 DOI:10.1093/lifemeta/load050
Qinchao Ding, Rui Guo, Liuyi Hao, Qing Song, Ai Fu, Shanglei Lai, Tiantian Xu, Hui Zhuge, Kaixin Chang, Yanli Chen, Haibin Wei, Daxi Ren, Zhaoli Sun, Zhenyuan Song, Xiaobing Dou, Songtao Li
{"title":"Hepatic TRPC3 loss contributes to chronic alcohol consumption-induced hepatic steatosis and liver injury in mice.","authors":"Qinchao Ding, Rui Guo, Liuyi Hao, Qing Song, Ai Fu, Shanglei Lai, Tiantian Xu, Hui Zhuge, Kaixin Chang, Yanli Chen, Haibin Wei, Daxi Ren, Zhaoli Sun, Zhenyuan Song, Xiaobing Dou, Songtao Li","doi":"10.1093/lifemeta/load050","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence discloses the involvement of calcium channel protein in the pathological process of liver diseases. Transient receptor potential cation channel subfamily C member 3 (TRPC3), a ubiquitously expressed non-selective cation channel protein, controls proliferation, inflammation, and immune response via operating calcium influx in various organs. However, our understanding on the biofunction of hepatic TRPC3 is still limited. The present study aims to clarify the role and potential mechanism(s) of TRPC3 in alcohol-associated liver disease (ALD). We recently found that TRPC3 expression plays an important role in the disease process of ALD. Alcohol exposure led to a significant reduction of hepatic TRPC3 in patients with alcohol-related hepatitis (AH) and ALD models. Antioxidants (N-acetylcysteine and mitoquinone) intervention improved alcohol-induced suppression of TRPC3 via a miR-339-5p-involved mechanism. TRPC3 loss robustly aggravated the alcohol-induced hepatic steatosis and liver injury in mouse liver; this was associated with the suppression of Ca<sup>2+</sup>/calmodulin-dependent protein kinase kinase 2 (CAMKK2)/AMP-activated protein kinase (AMPK) and dysregulation of genes related to lipid metabolism. TRPC3 loss also enhanced hepatic inflammation and early fibrosis-like change in mice. Replenishing hepatic TRPC3 effectively reversed chronic alcohol-induced detrimental alterations in ALD mice. Briefly, chronic alcohol exposure-induced TRPC3 reduction contributes to the pathological development of ALD via suppression of the CAMKK2/AMPK pathway. Oxidative stress-stimulated miR-339-5p upregulation contributes to alcohol-reduced TRPC3. TRPC3 is the requisite and a potential target to defend alcohol consumption-caused ALD.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 1","pages":"load050"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemeta/load050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging evidence discloses the involvement of calcium channel protein in the pathological process of liver diseases. Transient receptor potential cation channel subfamily C member 3 (TRPC3), a ubiquitously expressed non-selective cation channel protein, controls proliferation, inflammation, and immune response via operating calcium influx in various organs. However, our understanding on the biofunction of hepatic TRPC3 is still limited. The present study aims to clarify the role and potential mechanism(s) of TRPC3 in alcohol-associated liver disease (ALD). We recently found that TRPC3 expression plays an important role in the disease process of ALD. Alcohol exposure led to a significant reduction of hepatic TRPC3 in patients with alcohol-related hepatitis (AH) and ALD models. Antioxidants (N-acetylcysteine and mitoquinone) intervention improved alcohol-induced suppression of TRPC3 via a miR-339-5p-involved mechanism. TRPC3 loss robustly aggravated the alcohol-induced hepatic steatosis and liver injury in mouse liver; this was associated with the suppression of Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2)/AMP-activated protein kinase (AMPK) and dysregulation of genes related to lipid metabolism. TRPC3 loss also enhanced hepatic inflammation and early fibrosis-like change in mice. Replenishing hepatic TRPC3 effectively reversed chronic alcohol-induced detrimental alterations in ALD mice. Briefly, chronic alcohol exposure-induced TRPC3 reduction contributes to the pathological development of ALD via suppression of the CAMKK2/AMPK pathway. Oxidative stress-stimulated miR-339-5p upregulation contributes to alcohol-reduced TRPC3. TRPC3 is the requisite and a potential target to defend alcohol consumption-caused ALD.

肝脏 TRPC3 的缺失是慢性饮酒诱发小鼠肝脏脂肪变性和肝损伤的原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信