Current state and promise of user-centered design to harness explainable AI in clinical decision-support systems for patients with CNS tumors.

Frontiers in radiology Pub Date : 2025-01-13 eCollection Date: 2024-01-01 DOI:10.3389/fradi.2024.1433457
Eric W Prince, David M Mirsky, Todd C Hankinson, Carsten Görg
{"title":"Current state and promise of user-centered design to harness explainable AI in clinical decision-support systems for patients with CNS tumors.","authors":"Eric W Prince, David M Mirsky, Todd C Hankinson, Carsten Görg","doi":"10.3389/fradi.2024.1433457","DOIUrl":null,"url":null,"abstract":"<p><p>In neuro-oncology, MR imaging is crucial for obtaining detailed brain images to identify neoplasms, plan treatment, guide surgical intervention, and monitor the tumor's response. Recent AI advances in neuroimaging have promising applications in neuro-oncology, including guiding clinical decisions and improving patient management. However, the lack of clarity on how AI arrives at predictions has hindered its clinical translation. Explainable AI (XAI) methods aim to improve trustworthiness and informativeness, but their success depends on considering end-users' (clinicians') specific context and preferences. User-Centered Design (UCD) prioritizes user needs in an iterative design process, involving users throughout, providing an opportunity to design XAI systems tailored to clinical neuro-oncology. This review focuses on the intersection of MR imaging interpretation for neuro-oncology patient management, explainable AI for clinical decision support, and user-centered design. We provide a resource that organizes the necessary concepts, including design and evaluation, clinical translation, user experience and efficiency enhancement, and AI for improved clinical outcomes in neuro-oncology patient management. We discuss the importance of multi-disciplinary skills and user-centered design in creating successful neuro-oncology AI systems. We also discuss how explainable AI tools, embedded in a human-centered decision-making process and different from fully automated solutions, can potentially enhance clinician performance. Following UCD principles to build trust, minimize errors and bias, and create adaptable software has the promise of meeting the needs and expectations of healthcare professionals.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"4 ","pages":"1433457"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2024.1433457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In neuro-oncology, MR imaging is crucial for obtaining detailed brain images to identify neoplasms, plan treatment, guide surgical intervention, and monitor the tumor's response. Recent AI advances in neuroimaging have promising applications in neuro-oncology, including guiding clinical decisions and improving patient management. However, the lack of clarity on how AI arrives at predictions has hindered its clinical translation. Explainable AI (XAI) methods aim to improve trustworthiness and informativeness, but their success depends on considering end-users' (clinicians') specific context and preferences. User-Centered Design (UCD) prioritizes user needs in an iterative design process, involving users throughout, providing an opportunity to design XAI systems tailored to clinical neuro-oncology. This review focuses on the intersection of MR imaging interpretation for neuro-oncology patient management, explainable AI for clinical decision support, and user-centered design. We provide a resource that organizes the necessary concepts, including design and evaluation, clinical translation, user experience and efficiency enhancement, and AI for improved clinical outcomes in neuro-oncology patient management. We discuss the importance of multi-disciplinary skills and user-centered design in creating successful neuro-oncology AI systems. We also discuss how explainable AI tools, embedded in a human-centered decision-making process and different from fully automated solutions, can potentially enhance clinician performance. Following UCD principles to build trust, minimize errors and bias, and create adaptable software has the promise of meeting the needs and expectations of healthcare professionals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信