Benjamin Csippa, Péter Friedrich, István Szikora, György Paál
{"title":"Amplification of Secondary Flow at the Initiation Site of Intracranial Sidewall Aneurysms.","authors":"Benjamin Csippa, Péter Friedrich, István Szikora, György Paál","doi":"10.1007/s13239-025-00771-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.</p><p><strong>Methods: </strong>A composite evaluation framework was developed to analyze the simulated flow field in perpendicular cross-sections along the arterial centerline. The velocity field was decomposed into secondary flow components around the centerline in these cross-sections, allowing the direct comparison of the flow features with the geometrical parameters of the centerline. Qualitative and statistical analysis was performed to identify links between morphology, flow, and the formation site of the aneurysms.</p><p><strong>Results: </strong>The normalized mean curvature and curvature peak were significantly higher in the aneurysmal bends than in other arterial bends. Similarly, a significant difference was found for the normalized mean velocity ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.0274</mn></mrow> </math> ), the circumferential ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.0029</mn></mrow> </math> ), and radial ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.0057</mn></mrow> </math> ) velocity components between the arterial bends harboring the aneurysm than in other arterial bends. In contrast, the difference of means for the normalized axial velocity is insignificant ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.1471</mn></mrow> </math> ).</p><p><strong>Conclusion: </strong>Thirty cases with aneurysms located on the ICA were analyzed in the virtually reconstructed pre-aneurysmal state by an in-silico study. We found that sidewall aneurysm formation on the ICA is more probable in these arterial bends with the highest case-specific curvature, which are accompanied by the highest case-specific secondary flows (circumferential and radial velocity components) than in other bends.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-025-00771-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.
Methods: A composite evaluation framework was developed to analyze the simulated flow field in perpendicular cross-sections along the arterial centerline. The velocity field was decomposed into secondary flow components around the centerline in these cross-sections, allowing the direct comparison of the flow features with the geometrical parameters of the centerline. Qualitative and statistical analysis was performed to identify links between morphology, flow, and the formation site of the aneurysms.
Results: The normalized mean curvature and curvature peak were significantly higher in the aneurysmal bends than in other arterial bends. Similarly, a significant difference was found for the normalized mean velocity ( ), the circumferential ( ), and radial ( ) velocity components between the arterial bends harboring the aneurysm than in other arterial bends. In contrast, the difference of means for the normalized axial velocity is insignificant ( ).
Conclusion: Thirty cases with aneurysms located on the ICA were analyzed in the virtually reconstructed pre-aneurysmal state by an in-silico study. We found that sidewall aneurysm formation on the ICA is more probable in these arterial bends with the highest case-specific curvature, which are accompanied by the highest case-specific secondary flows (circumferential and radial velocity components) than in other bends.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.