Brain state-dependent neocortico-hippocampal network dynamics are modulated by postnatal stimuli.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Yoshiaki Shinohara, Shinnosuke Koketsu, Nobuhiko Ohno, Hajime Hirase, Takatoshi Ueki
{"title":"Brain state-dependent neocortico-hippocampal network dynamics are modulated by postnatal stimuli.","authors":"Yoshiaki Shinohara, Shinnosuke Koketsu, Nobuhiko Ohno, Hajime Hirase, Takatoshi Ueki","doi":"10.1523/JNEUROSCI.0053-21.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice. We found that neocortical activity elevates around hippocampal sharp wave ripples (SWR). SWR-associated neocortical activities occurred predominantly in vision-related regions including visual, retrosplenial and frontal cortex. While pre-SWR neocortical activities were frequently observed in awake and natural sleeping states, post-SWR neocortical activity decreased significantly in the latter. Urethane anesthetized mice also exhibited SWR-correlated calcium elevation, but in longer time scale than observed in natural sleeping mice. During hippocampal theta oscillation states, phase-locked oscillations of calcium activity were observed throughout the entire neocortical areas. In addition, possible environmental effects on neocortico-hippocampal dynamics were assessed in this study by comparing mice reared in ISO (isolated condition) and ENR (enriched environment). In both SWR and theta oscillations, mice reared in ISO exhibited clearer brain state-dependent dynamics than those reared in ENR. Our data demonstrate that the neocortex and hippocampus exhibit heterogeneous activity patterns that characterize brain states, and postnatal experience plays a significant role in modulating these patterns.<b>Significant Statement</b> The hippocampus is a center for memory formation. However, the memory formed in the hippocampus is not stored forever, but gradually transferred into the cerebral cortex synchronized activities between the neocortex and hippocampus has been hypothesized (for hippocampus-independent memory see (Sutherland and Rudy, 1989)). However, spatio-temporal dynamics between hippocampus and whole neocortical areas remains partially unexplored. We measured cortical calcium activities with hippocampal electroencephalogram (EEG) simultaneously and found that the activities of widespread neocortical areas are temporally associated with hippocampal EEG. The neocortico-hippocampal dynamics is primarily regulated by animal awake/sleep state. Even if similar EEG patters were observed, temporal dynamics between the neocortex and hippocampus exhibit distinct patterns between awake and sleep period. In addition, animals' postnatal experience modulates the dynamics.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0053-21.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice. We found that neocortical activity elevates around hippocampal sharp wave ripples (SWR). SWR-associated neocortical activities occurred predominantly in vision-related regions including visual, retrosplenial and frontal cortex. While pre-SWR neocortical activities were frequently observed in awake and natural sleeping states, post-SWR neocortical activity decreased significantly in the latter. Urethane anesthetized mice also exhibited SWR-correlated calcium elevation, but in longer time scale than observed in natural sleeping mice. During hippocampal theta oscillation states, phase-locked oscillations of calcium activity were observed throughout the entire neocortical areas. In addition, possible environmental effects on neocortico-hippocampal dynamics were assessed in this study by comparing mice reared in ISO (isolated condition) and ENR (enriched environment). In both SWR and theta oscillations, mice reared in ISO exhibited clearer brain state-dependent dynamics than those reared in ENR. Our data demonstrate that the neocortex and hippocampus exhibit heterogeneous activity patterns that characterize brain states, and postnatal experience plays a significant role in modulating these patterns.Significant Statement The hippocampus is a center for memory formation. However, the memory formed in the hippocampus is not stored forever, but gradually transferred into the cerebral cortex synchronized activities between the neocortex and hippocampus has been hypothesized (for hippocampus-independent memory see (Sutherland and Rudy, 1989)). However, spatio-temporal dynamics between hippocampus and whole neocortical areas remains partially unexplored. We measured cortical calcium activities with hippocampal electroencephalogram (EEG) simultaneously and found that the activities of widespread neocortical areas are temporally associated with hippocampal EEG. The neocortico-hippocampal dynamics is primarily regulated by animal awake/sleep state. Even if similar EEG patters were observed, temporal dynamics between the neocortex and hippocampus exhibit distinct patterns between awake and sleep period. In addition, animals' postnatal experience modulates the dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信