Scaling of ventral hippocampal activity during anxiety.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Carlo Cerquetella, Camille Gontier, Thomas Forro, Jean-Pascal Pfister, Stéphane Ciocchi
{"title":"Scaling of ventral hippocampal activity during anxiety.","authors":"Carlo Cerquetella, Camille Gontier, Thomas Forro, Jean-Pascal Pfister, Stéphane Ciocchi","doi":"10.1523/JNEUROSCI.1128-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory, and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g. to different anxiety levels, is not well understood. We developed an adjustable linear track maze (aLTM) for male mice with which we could induce a scaling of behavioral anxiety levels within the same spatial environment. Using in vivo single-unit recordings, optogenetic manipulations and population-level analysis, we examined the changes and causal effects of vH activity at different anxiety levels. We found that anxiogenic experiences activated the vH and that this activity scaled with increasing anxiety levels. We identified two processes that contributed to this scaling of anxiety-related activity: increased tuning and successive remapping of neurons to the anxiogenic compartment. Moreover, optogenetic inhibition of the vH reduced anxiety across different levels, while anxiety-related activity scaling could be decoded using a linear classifier. Collectively, our findings position the vH as a critical limbic region that functions as an 'anxiometer' by scaling its activity based on perceived anxiety levels. Our discoveries go beyond the traditional theory of cognitive maps in the hippocampus underlying spatial navigation and memory, by identifying hippocampal mechanisms selectively regulating anxiety.<b>Significant statement</b> This study reveals how the ventral hippocampus (vH) functions as an \"anxiometer\", tuning its activity to different anxiety levels. Using an adjustable linear track maze (aLTM) for mice, we demonstrated that vH activity scales with increased anxiety. By recording single-neuron activity and performing optogenetic manipulation of vH during the aLTM task, we identified key neuronal mechanisms for neuronal scaling during anxiety. Additionally, a linear classifier was used to highlight anxiety-related activity scaling. Our findings advance the understanding of hippocampal function beyond spatial navigation and memory, offering new insights into how the brain regulates anxiety at the neuronal level.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1128-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory, and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g. to different anxiety levels, is not well understood. We developed an adjustable linear track maze (aLTM) for male mice with which we could induce a scaling of behavioral anxiety levels within the same spatial environment. Using in vivo single-unit recordings, optogenetic manipulations and population-level analysis, we examined the changes and causal effects of vH activity at different anxiety levels. We found that anxiogenic experiences activated the vH and that this activity scaled with increasing anxiety levels. We identified two processes that contributed to this scaling of anxiety-related activity: increased tuning and successive remapping of neurons to the anxiogenic compartment. Moreover, optogenetic inhibition of the vH reduced anxiety across different levels, while anxiety-related activity scaling could be decoded using a linear classifier. Collectively, our findings position the vH as a critical limbic region that functions as an 'anxiometer' by scaling its activity based on perceived anxiety levels. Our discoveries go beyond the traditional theory of cognitive maps in the hippocampus underlying spatial navigation and memory, by identifying hippocampal mechanisms selectively regulating anxiety.Significant statement This study reveals how the ventral hippocampus (vH) functions as an "anxiometer", tuning its activity to different anxiety levels. Using an adjustable linear track maze (aLTM) for mice, we demonstrated that vH activity scales with increased anxiety. By recording single-neuron activity and performing optogenetic manipulation of vH during the aLTM task, we identified key neuronal mechanisms for neuronal scaling during anxiety. Additionally, a linear classifier was used to highlight anxiety-related activity scaling. Our findings advance the understanding of hippocampal function beyond spatial navigation and memory, offering new insights into how the brain regulates anxiety at the neuronal level.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信