Diagnosis of traumatic liver injury on computed tomography using machine learning algorithms and radiomics features: The role of artificial intelligence for rapid diagnosis in emergency rooms.

IF 1.5 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL
Journal of Research in Medical Sciences Pub Date : 2024-12-31 eCollection Date: 2024-01-01 DOI:10.4103/jrms.jrms_847_23
Hanieh Alimiri Dehbaghi, Karim Khoshgard, Hamid Sharini, Samira Jafari Khairabadi
{"title":"Diagnosis of traumatic liver injury on computed tomography using machine learning algorithms and radiomics features: The role of artificial intelligence for rapid diagnosis in emergency rooms.","authors":"Hanieh Alimiri Dehbaghi, Karim Khoshgard, Hamid Sharini, Samira Jafari Khairabadi","doi":"10.4103/jrms.jrms_847_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The initial assessment of trauma is a time-consuming and challenging task. The purpose of this research is to examine the diagnostic effectiveness and usefulness of machine learning models paired with radiomics features to identify blunt traumatic liver injury in abdominal computed tomography (CT) images.</p><p><strong>Materials and methods: </strong>In this study, 600 CT scan images of people with mild and severe liver damage due to trauma and healthy people were collected from the Kaggle dataset. The axial images were segmented by an experienced radiologist, and radiomics features were extracted from each region of interest. Initially, 30 machine learning models were implemented, and finally, three machine learning models were selected including Light Gradient-Boosting Machine (LGBM), Ridge Classifier, and Extreme Gradient Boosting (XGBoost), and their performance was examined in more detail.</p><p><strong>Results: </strong>The two criteria of precision and specificity of LGBM and XGBoost models in diagnosing mild liver injury were calculated to be 100%. Only 6.00% of cases were misdiagnosed by the LGBM model. The LGBM model achieved 100% sensitivity and 99.00% accuracy in diagnosing severe liver injury. The area under the receiver operating characteristic curve value and precision of this model were also calculated to be 99.00% and 98.00%, respectively.</p><p><strong>Conclusion: </strong>The artificial intelligence models used in this study have great potential to improve patient care by assisting radiologists and other physicians in diagnosing and staging trauma-related liver injuries. These models can help prioritize positive studies, allow more rapid evaluation, and identify more severe injuries that may require immediate intervention.</p>","PeriodicalId":50062,"journal":{"name":"Journal of Research in Medical Sciences","volume":"29 ","pages":"77"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/jrms.jrms_847_23","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The initial assessment of trauma is a time-consuming and challenging task. The purpose of this research is to examine the diagnostic effectiveness and usefulness of machine learning models paired with radiomics features to identify blunt traumatic liver injury in abdominal computed tomography (CT) images.

Materials and methods: In this study, 600 CT scan images of people with mild and severe liver damage due to trauma and healthy people were collected from the Kaggle dataset. The axial images were segmented by an experienced radiologist, and radiomics features were extracted from each region of interest. Initially, 30 machine learning models were implemented, and finally, three machine learning models were selected including Light Gradient-Boosting Machine (LGBM), Ridge Classifier, and Extreme Gradient Boosting (XGBoost), and their performance was examined in more detail.

Results: The two criteria of precision and specificity of LGBM and XGBoost models in diagnosing mild liver injury were calculated to be 100%. Only 6.00% of cases were misdiagnosed by the LGBM model. The LGBM model achieved 100% sensitivity and 99.00% accuracy in diagnosing severe liver injury. The area under the receiver operating characteristic curve value and precision of this model were also calculated to be 99.00% and 98.00%, respectively.

Conclusion: The artificial intelligence models used in this study have great potential to improve patient care by assisting radiologists and other physicians in diagnosing and staging trauma-related liver injuries. These models can help prioritize positive studies, allow more rapid evaluation, and identify more severe injuries that may require immediate intervention.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Research in Medical Sciences
Journal of Research in Medical Sciences MEDICINE, GENERAL & INTERNAL-
CiteScore
2.60
自引率
6.20%
发文量
75
审稿时长
3-6 weeks
期刊介绍: Journal of Research in Medical Sciences, a publication of Isfahan University of Medical Sciences, is a peer-reviewed online continuous journal with print on demand compilation of issues published. The journal’s full text is available online at http://www.jmsjournal.net. The journal allows free access (Open Access) to its contents and permits authors to self-archive final accepted version of the articles on any OAI-compliant institutional / subject-based repository.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信