Qishuo Yang, Xingxing Li, Ludan Zhao, Gang Wang, Zenglong Guo, Kangdi Niu, Shaolong Jiang, Fuchen Hou, Junhao Lin
{"title":"Unified transmission electron microscopy with the glovebox integrated system for investigating air-sensitive two-dimensional quantum materials.","authors":"Qishuo Yang, Xingxing Li, Ludan Zhao, Gang Wang, Zenglong Guo, Kangdi Niu, Shaolong Jiang, Fuchen Hou, Junhao Lin","doi":"10.1016/j.xinn.2024.100751","DOIUrl":null,"url":null,"abstract":"<p><p>Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements. This review highlights recent technical advancements to preserve the intrinsic structures of water- and oxygen-sensitive 2D materials for atomic-scale characterizations. A critical development discussed in this review is implementing an inert gas-protected glovebox integrated system (GIS) designed specifically for TEM experiments. In addition, this review emphasizes air-sensitive materials such as 2D transition metal dichalcogenides, transition metal dihalides and trihalides, and low-dimensional magnetic materials, demonstrating breakthroughs in overcoming their environmental sensitivity. Furthermore, the progress in TEM characterization enabled by the GIS is analyzed to provide a comprehensive overview of state-of-the-art methodologies in this rapidly advancing field.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 1","pages":"100751"},"PeriodicalIF":33.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100751","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements. This review highlights recent technical advancements to preserve the intrinsic structures of water- and oxygen-sensitive 2D materials for atomic-scale characterizations. A critical development discussed in this review is implementing an inert gas-protected glovebox integrated system (GIS) designed specifically for TEM experiments. In addition, this review emphasizes air-sensitive materials such as 2D transition metal dichalcogenides, transition metal dihalides and trihalides, and low-dimensional magnetic materials, demonstrating breakthroughs in overcoming their environmental sensitivity. Furthermore, the progress in TEM characterization enabled by the GIS is analyzed to provide a comprehensive overview of state-of-the-art methodologies in this rapidly advancing field.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.