Effect of transgene on salt tolerance of tobacco.

IF 2.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Jie Sun, Yan Dong, Yuemei Meng, Jingran Bi, Hongmei Liu, Junjie Ren, Jinmao Wang, Yachao Ren, Minsheng Yang
{"title":"Effect of transgene on salt tolerance of tobacco.","authors":"Jie Sun, Yan Dong, Yuemei Meng, Jingran Bi, Hongmei Liu, Junjie Ren, Jinmao Wang, Yachao Ren, Minsheng Yang","doi":"10.1007/s11248-025-00430-3","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics. PCR showed the exogenous genes had been integrated into the tobacco genome. FQ-PCR showed under clean water treatment the target genes were expressed in all transgenic plants at the transcriptional level. The transcript abundances of target genes changed with the number of genes increased, and improved following salt stress. Comparative analyses of salt tolerance indexes showed height growth, biomass (except for N29), chlorophyll content, net photosynthetic rate, Fv/Fm, and PI of all transgenic plants and CK were lower under salt stress than under clean water treatment, to varying degrees. However, the descent ratio was smaller in transgenic plants. A comprehensive evaluation of multiple salt-tolerance indicators performed using the membership function method showed the average salt tolerance of each vector transgenic line was higher than that of CK, and salt tolerance was greater in transgenic polyvalent gene lines than in transgenic monovalent gene lines. The average salt tolerance was N29 > N28 > N30 > N27 > CK. This study provides a theoretical and practical reference for salt tolerance breeding in other plants.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"11"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00430-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics. PCR showed the exogenous genes had been integrated into the tobacco genome. FQ-PCR showed under clean water treatment the target genes were expressed in all transgenic plants at the transcriptional level. The transcript abundances of target genes changed with the number of genes increased, and improved following salt stress. Comparative analyses of salt tolerance indexes showed height growth, biomass (except for N29), chlorophyll content, net photosynthetic rate, Fv/Fm, and PI of all transgenic plants and CK were lower under salt stress than under clean water treatment, to varying degrees. However, the descent ratio was smaller in transgenic plants. A comprehensive evaluation of multiple salt-tolerance indicators performed using the membership function method showed the average salt tolerance of each vector transgenic line was higher than that of CK, and salt tolerance was greater in transgenic polyvalent gene lines than in transgenic monovalent gene lines. The average salt tolerance was N29 > N28 > N30 > N27 > CK. This study provides a theoretical and practical reference for salt tolerance breeding in other plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信