Prepubertal phthalate exposure can cause histopathological alterations, DNA methylation and histone acetylation changes in rat brain.

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Seyda Koc, Ekin Erdogmus, Ozlem Bozdemir, Deniz Ozkan-Vardar, Unzile Yaman, Pınar Erkekoglu, Naciye Dilara Zeybek, Belma Kocer-Gumusel
{"title":"Prepubertal phthalate exposure can cause histopathological alterations, DNA methylation and histone acetylation changes in rat brain.","authors":"Seyda Koc, Ekin Erdogmus, Ozlem Bozdemir, Deniz Ozkan-Vardar, Unzile Yaman, Pınar Erkekoglu, Naciye Dilara Zeybek, Belma Kocer-Gumusel","doi":"10.1177/07482337251315212","DOIUrl":null,"url":null,"abstract":"<p><p>Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60). The rats in the study groups were sacrificed during adulthood, and histopathological changes, epigenetic changes, and oxidative stress parameters were evaluated in brain tissues. Histopathological findings indicating the presence of deterioration in brain tissue morphology were obtained, more prominently in the DEHP-H group. Examining the hippocampus under the light microscope, pyramidal neuron loss was detected only in CA1 of the DEHP-L group, while in DEHP-H rats, pyramidal neuron losses were detected in the CA1, CA2, and CA3 regions. No significant change was observed in brain lipid peroxidation levels with DEHP compared to control. Significant increases in total glutathione (GSH) in both dose groups were considered to be an adaptive response to DEHP-induced oxidative stress. The decrease in DNA methylation in the brain, although not statistically significant, and the increase in histone modification showed that exposure to DEHP may cause epigenetic changes in the brain and these epigenetic changes may also take place as one of the mechanisms underlying the damage observed in the brain. The results suggest that DEHP exposure during early development may have a significant effect on brain development.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"7482337251315212"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337251315212","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60). The rats in the study groups were sacrificed during adulthood, and histopathological changes, epigenetic changes, and oxidative stress parameters were evaluated in brain tissues. Histopathological findings indicating the presence of deterioration in brain tissue morphology were obtained, more prominently in the DEHP-H group. Examining the hippocampus under the light microscope, pyramidal neuron loss was detected only in CA1 of the DEHP-L group, while in DEHP-H rats, pyramidal neuron losses were detected in the CA1, CA2, and CA3 regions. No significant change was observed in brain lipid peroxidation levels with DEHP compared to control. Significant increases in total glutathione (GSH) in both dose groups were considered to be an adaptive response to DEHP-induced oxidative stress. The decrease in DNA methylation in the brain, although not statistically significant, and the increase in histone modification showed that exposure to DEHP may cause epigenetic changes in the brain and these epigenetic changes may also take place as one of the mechanisms underlying the damage observed in the brain. The results suggest that DEHP exposure during early development may have a significant effect on brain development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
72
审稿时长
4 months
期刊介绍: Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信