Dora Rolo , Joana F.S. Pereira , Lídia Gonçalves , Ana Bettencourt , Peter Jordan , Maria João Silva , Paulo Matos , Henriqueta Louro
{"title":"Assessing the impact of TiO2 nanomaterials on intestinal cells: New evidence for epithelial translocation and potential pro-inflammatory effects","authors":"Dora Rolo , Joana F.S. Pereira , Lídia Gonçalves , Ana Bettencourt , Peter Jordan , Maria João Silva , Paulo Matos , Henriqueta Louro","doi":"10.1016/j.tox.2025.154066","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the potential impact of nanomaterials (NMs) on human health requires further investigation into the organ-specific nano-bio interplay at the cellular and molecular levels. We showed increased chromosomal damage in intestinal cells exposed to some of <em>in vitro</em> digested Titanium dioxide (TiO<sub>2</sub>) NMs. The present study aimed to explore possible mechanisms linked to the uptake, epithelial barrier integrity, cellular trafficking, as well as activation of pro-inflammatory pathways, after exposure to three TiO<sub>2</sub>-NMs (NM-102, NM-103, and NM-105).</div><div>Using confocal microscopy, we show that all NMs, digested or not, were able to enter different types of intestinal cells. At the physiologically relevant concentration of 14 µg/mL, the digested TiO<sub>2</sub>-NMs did not compromise the transepithelial resistance, nor the levels of epithelial markers E-cadherin and Zonula occludens protein 1 (ZO-1), of polarized enterocyte monolayers. Nonetheless, all NMs were internalized by intestinal cells and, while NM-102 was retained in lysosomes, NM-103 and NM-105 were able to transverse the epithelial barrier through transcytosis. Moreover, 24 h exposure of 14 and 1.4 μg/mL digested NM-105, promoted interleukin IL-1β expression in activated M1 macrophages, indicating a potential pro-inflammatory action in the gut.</div><div>Taken together, our findings shed light on the cell-specific nano-bio interplay of TiO<sub>2</sub>-NMs in the context of the intestinal tract and highlight transcytosis as a potential gateway for their systemic distribution. The potential pro-inflammatory action of digested NM-105 emphasizes the importance of pursuing research into the potential impact of NMs on human health and contribute to the weight of evidence to limit their use in food.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"511 ","pages":"Article 154066"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25000228","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the potential impact of nanomaterials (NMs) on human health requires further investigation into the organ-specific nano-bio interplay at the cellular and molecular levels. We showed increased chromosomal damage in intestinal cells exposed to some of in vitro digested Titanium dioxide (TiO2) NMs. The present study aimed to explore possible mechanisms linked to the uptake, epithelial barrier integrity, cellular trafficking, as well as activation of pro-inflammatory pathways, after exposure to three TiO2-NMs (NM-102, NM-103, and NM-105).
Using confocal microscopy, we show that all NMs, digested or not, were able to enter different types of intestinal cells. At the physiologically relevant concentration of 14 µg/mL, the digested TiO2-NMs did not compromise the transepithelial resistance, nor the levels of epithelial markers E-cadherin and Zonula occludens protein 1 (ZO-1), of polarized enterocyte monolayers. Nonetheless, all NMs were internalized by intestinal cells and, while NM-102 was retained in lysosomes, NM-103 and NM-105 were able to transverse the epithelial barrier through transcytosis. Moreover, 24 h exposure of 14 and 1.4 μg/mL digested NM-105, promoted interleukin IL-1β expression in activated M1 macrophages, indicating a potential pro-inflammatory action in the gut.
Taken together, our findings shed light on the cell-specific nano-bio interplay of TiO2-NMs in the context of the intestinal tract and highlight transcytosis as a potential gateway for their systemic distribution. The potential pro-inflammatory action of digested NM-105 emphasizes the importance of pursuing research into the potential impact of NMs on human health and contribute to the weight of evidence to limit their use in food.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.