Applications of Cell-Based Protein Array Technology to Preclinical Safety Assessment of Biological Products.

IF 1.4 4区 医学 Q3 PATHOLOGY
Axel Vicart, Cam Holland, Kathryn Fraser, Frederic Gervais, Mark Aspinall-O'Dea, Nick Brown, Kirk Siddals, Géraldine Greiner, Vinicius Carreira, Elizabeth Galbreath, Maggie Willer, Saravanan Kaliyaperumal, Charles Wood, Tim MacLachlan, Elizabeth Clark
{"title":"Applications of Cell-Based Protein Array Technology to Preclinical Safety Assessment of Biological Products.","authors":"Axel Vicart, Cam Holland, Kathryn Fraser, Frederic Gervais, Mark Aspinall-O'Dea, Nick Brown, Kirk Siddals, Géraldine Greiner, Vinicius Carreira, Elizabeth Galbreath, Maggie Willer, Saravanan Kaliyaperumal, Charles Wood, Tim MacLachlan, Elizabeth Clark","doi":"10.1177/01926233241311259","DOIUrl":null,"url":null,"abstract":"<p><p>Off-target evaluation is essential in preclinical safety assessments of novel biotherapeutics, supporting lead molecule selection, endpoint selection in toxicology studies, and regulatory requirements for first-in-human trials. Off-target interaction of a therapeutic antibody and antibody derivatives has been historically assessed via the Tissue Cross-Reactivity (TCR) study, in which the candidate molecule is used as a reagent in immunohistochemistry (IHC) to assess binding of the candidate molecule to a panel of human tissue sections. The TCR approach is limited by the performance of the therapeutic as an IHC reagent, which is often suboptimal to outright infeasible. Furthermore, binding of the therapeutic in IHC conditions typically has poor in vitro to in vivo translation and lacks qualitative data of the identity of putative off-targets limiting the decisional value of the data. More recently, cell-based protein arrays (CBPA) that allow for screening against a large portion of the human membrane proteome and secretome have emerged as a complement, and likely a higher value alternative, to IHC-based off-target assessment. These arrays identify specific protein interactions and may be useful for testing nontraditional antibody-based therapeutic formats that are unsuitable for TCR studies. This article presents an overview of CBPA technologies in the context of TCR and off-target assessment studies. Selected case examples and strategic considerations covering a range of different modalities are presented.</p>","PeriodicalId":23113,"journal":{"name":"Toxicologic Pathology","volume":" ","pages":"1926233241311259"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/01926233241311259","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Off-target evaluation is essential in preclinical safety assessments of novel biotherapeutics, supporting lead molecule selection, endpoint selection in toxicology studies, and regulatory requirements for first-in-human trials. Off-target interaction of a therapeutic antibody and antibody derivatives has been historically assessed via the Tissue Cross-Reactivity (TCR) study, in which the candidate molecule is used as a reagent in immunohistochemistry (IHC) to assess binding of the candidate molecule to a panel of human tissue sections. The TCR approach is limited by the performance of the therapeutic as an IHC reagent, which is often suboptimal to outright infeasible. Furthermore, binding of the therapeutic in IHC conditions typically has poor in vitro to in vivo translation and lacks qualitative data of the identity of putative off-targets limiting the decisional value of the data. More recently, cell-based protein arrays (CBPA) that allow for screening against a large portion of the human membrane proteome and secretome have emerged as a complement, and likely a higher value alternative, to IHC-based off-target assessment. These arrays identify specific protein interactions and may be useful for testing nontraditional antibody-based therapeutic formats that are unsuitable for TCR studies. This article presents an overview of CBPA technologies in the context of TCR and off-target assessment studies. Selected case examples and strategic considerations covering a range of different modalities are presented.

脱靶评估对于新型生物治疗药物的临床前安全性评估至关重要,它支持先导分子的选择、毒理学研究的终点选择以及首次人体试验的监管要求。治疗性抗体和抗体衍生物的脱靶相互作用历来是通过组织交叉反应(TCR)研究来评估的,在该研究中,候选分子被用作免疫组织化学(IHC)试剂,以评估候选分子与一组人体组织切片的结合情况。TCR 方法受限于治疗药物作为 IHC 试剂的性能,通常不够理想,甚至完全不可行。此外,IHC 条件下的疗法结合通常在体外到体内的转化率较低,而且缺乏关于假定非靶点身份的定性数据,从而限制了数据的决策价值。最近,可针对大部分人类膜蛋白质组和分泌组进行筛选的细胞基蛋白质阵列(CBPA)已成为基于 IHC 的非靶点评估的补充,也可能是价值更高的替代方法。这些阵列可识别特定的蛋白质相互作用,并可用于测试不适合 TCR 研究的非传统抗体疗法。本文概述了 TCR 和脱靶评估研究中的 CBPA 技术。文章介绍了涵盖各种不同模式的精选案例和战略考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicologic Pathology
Toxicologic Pathology 医学-病理学
CiteScore
4.70
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Toxicologic Pathology is dedicated to the promotion of human, animal, and environmental health through the dissemination of knowledge, techniques, and guidelines to enhance the understanding and practice of toxicologic pathology. Toxicologic Pathology, the official journal of the Society of Toxicologic Pathology, will publish Original Research Articles, Symposium Articles, Review Articles, Meeting Reports, New Techniques, and Position Papers that are relevant to toxicologic pathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信