Mesenchymal Stem Cells Carrying Viral Fusogenic Protein p14 to Treat Solid Tumors by Inducing Cell-Cell Fusion and Immune Activation.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.34133/research.0594
Yao Wang, Xunlei Pang, Ruirui Li, Jiuzhou Chen, Chen Wen, Huihuang Zhu, Tingyu Long, Jianjie Li, Lijun Zheng, Youcai Deng, Junnian Zheng, Bo Xu
{"title":"Mesenchymal Stem Cells Carrying Viral Fusogenic Protein p14 to Treat Solid Tumors by Inducing Cell-Cell Fusion and Immune Activation.","authors":"Yao Wang, Xunlei Pang, Ruirui Li, Jiuzhou Chen, Chen Wen, Huihuang Zhu, Tingyu Long, Jianjie Li, Lijun Zheng, Youcai Deng, Junnian Zheng, Bo Xu","doi":"10.34133/research.0594","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Chimeric antigen receptor (CAR)-based immune cell therapies attack neighboring cancer cells after receptor recognition but are unable to directly affect distant tumor cells. This limitation may contribute to their inefficiency in treating solid tumors, given the restricted intratumoral infiltration and immunosuppressive tumor microenvironment. Therefore, cell-cell fusion as a cell-killing mechanism might develop a novel cytotherapy aimed at improving the efficacy against solid tumors. <b>Methods:</b> We constructed a fusogenic protein, fusion-associated small transmembrane (FAST) p14 of reptilian reovirus, into cancer cells and mesenchymal stem cells (MSCs), which cocultured with various colon cancer cells and melenoma cells to validate its ability to induce cell fusion and syncytia formation. RNA sequencing, quantitative reverse transcription polymerase chain reaction, and Western blot were performed to elucidate the mechanism of syncytia death. Cell viability assay was employed to assess the killing effects of MSCs carrying the p14 protein (MSCs-p14), which was also identified in the subcutaneous tumor models. Subsequently, the Tet-On system was introduced to enhance the controllability and safety of therapy. <b>Results:</b> Cancer cells incorporated with fusogenic protein p14 FAST from reovirus fused together to form syncytia and subsequently died through apoptosis and pyroptosis. MSCs-p14 cocultured with different cancer cells and effienctly induced cancer cell fusion and caused widespread cancer cell death in vitro. In mouse tumor models, mMSCs-p14 treatment markedly suppressed tumor growth and also enhanced the activity of natural killer cells and macrophages. Controllability and safety of MSCs-p14 therapy were further improved by introducing the tetracycline-controlled transcriptional system. <b>Conclusion:</b> MSC-based cytotherapy carrying viral fusogenic protein in this study kills cancer cells by inducing cell-cell fusion. It has demonstrated definite efficacy in treating solid tumors and is worth considering for clinical development.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0594"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0594","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chimeric antigen receptor (CAR)-based immune cell therapies attack neighboring cancer cells after receptor recognition but are unable to directly affect distant tumor cells. This limitation may contribute to their inefficiency in treating solid tumors, given the restricted intratumoral infiltration and immunosuppressive tumor microenvironment. Therefore, cell-cell fusion as a cell-killing mechanism might develop a novel cytotherapy aimed at improving the efficacy against solid tumors. Methods: We constructed a fusogenic protein, fusion-associated small transmembrane (FAST) p14 of reptilian reovirus, into cancer cells and mesenchymal stem cells (MSCs), which cocultured with various colon cancer cells and melenoma cells to validate its ability to induce cell fusion and syncytia formation. RNA sequencing, quantitative reverse transcription polymerase chain reaction, and Western blot were performed to elucidate the mechanism of syncytia death. Cell viability assay was employed to assess the killing effects of MSCs carrying the p14 protein (MSCs-p14), which was also identified in the subcutaneous tumor models. Subsequently, the Tet-On system was introduced to enhance the controllability and safety of therapy. Results: Cancer cells incorporated with fusogenic protein p14 FAST from reovirus fused together to form syncytia and subsequently died through apoptosis and pyroptosis. MSCs-p14 cocultured with different cancer cells and effienctly induced cancer cell fusion and caused widespread cancer cell death in vitro. In mouse tumor models, mMSCs-p14 treatment markedly suppressed tumor growth and also enhanced the activity of natural killer cells and macrophages. Controllability and safety of MSCs-p14 therapy were further improved by introducing the tetracycline-controlled transcriptional system. Conclusion: MSC-based cytotherapy carrying viral fusogenic protein in this study kills cancer cells by inducing cell-cell fusion. It has demonstrated definite efficacy in treating solid tumors and is worth considering for clinical development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信