{"title":"A machine learning technique for optimizing load demand prediction within air conditioning systems utilizing GRU/IASO model.","authors":"Meng He, Hui Wang, Myo Thwin","doi":"10.1038/s41598-025-87776-0","DOIUrl":null,"url":null,"abstract":"<p><p>Air conditioning systems are widely used to provide thermal comfort in hot and humid regions, but they also consume a large amount of energy. Therefore, accurate and reliable load demand forecasting is essential for energy management and optimization in air conditioning systems. Within the current paper, a novel model on the basis of machine learning has been presented for dynamic optimal load demand forecasting in air conditioning systems. The model is based on using an optimized design of Gated recurrent unit (GRU) network and an enhanced metaheuristic algorithm, named Improved Alpine Skiing Optimizer (IASO). GRU is a recurrent neural network that has the ability to comprehend intricate temporal relationships within the input data. On the other hand, the IASO technique has been considered to be a population-based optimization technique emulating the downhill skiing behavior of skiers. The proposed GRU/IASO model is trained and tested utilizing data of real-world obtained through a commercial complex situated within an area characterized by high humidity and hot climate. By comparing the proposed method with some other commonly used techniques, including ---, the advantage of the suggested model regarding accuracy and robustness has been defined.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3353"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87776-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Air conditioning systems are widely used to provide thermal comfort in hot and humid regions, but they also consume a large amount of energy. Therefore, accurate and reliable load demand forecasting is essential for energy management and optimization in air conditioning systems. Within the current paper, a novel model on the basis of machine learning has been presented for dynamic optimal load demand forecasting in air conditioning systems. The model is based on using an optimized design of Gated recurrent unit (GRU) network and an enhanced metaheuristic algorithm, named Improved Alpine Skiing Optimizer (IASO). GRU is a recurrent neural network that has the ability to comprehend intricate temporal relationships within the input data. On the other hand, the IASO technique has been considered to be a population-based optimization technique emulating the downhill skiing behavior of skiers. The proposed GRU/IASO model is trained and tested utilizing data of real-world obtained through a commercial complex situated within an area characterized by high humidity and hot climate. By comparing the proposed method with some other commonly used techniques, including ---, the advantage of the suggested model regarding accuracy and robustness has been defined.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.