Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.

IF 2.9 3区 生物学 Q2 PLANT SCIENCES
Ryo Nagao, Haruya Ogawa, Takehiro Suzuki, Naoshi Dohmae, Koji Kato, Yoshiki Nakajima, Jian-Ren Shen
{"title":"Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.","authors":"Ryo Nagao, Haruya Ogawa, Takehiro Suzuki, Naoshi Dohmae, Koji Kato, Yoshiki Nakajima, Jian-Ren Shen","doi":"10.1007/s11120-024-01134-1","DOIUrl":null,"url":null,"abstract":"<p><p>Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation. PSI and LHCI were similarly prepared following the dissociation of PSI-LHCI with Anzergent 3-16. Polypeptide analysis of PSI-LHCI revealed the presence of PSI and LHC proteins, along with red-lineage chlorophyll a/b-binding-like protein (RedCAP), which is distinct from LHC proteins within the LHC protein superfamily. RedCAP, rather than LHC proteins, exhibited tight binding to PSI. Carotenoid analysis of LHCI identified zeaxanthin, β-cryptoxanthin, and β-carotene, with zeaxanthin particularly enriched, which is consistent with other red algal LHCIs. A Qy peak of chlorophyll a in the LHCI absorption spectrum was blue-shifted compared with those of PSI-LHCI and PSI, and a fluorescence emission peak was similarly shifted to shorter wavelengths. Based on these results, we discuss the diversity of LHC proteins and RedCAP in red algal PSI-LHCI supercomplexes.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"14"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01134-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation. PSI and LHCI were similarly prepared following the dissociation of PSI-LHCI with Anzergent 3-16. Polypeptide analysis of PSI-LHCI revealed the presence of PSI and LHC proteins, along with red-lineage chlorophyll a/b-binding-like protein (RedCAP), which is distinct from LHC proteins within the LHC protein superfamily. RedCAP, rather than LHC proteins, exhibited tight binding to PSI. Carotenoid analysis of LHCI identified zeaxanthin, β-cryptoxanthin, and β-carotene, with zeaxanthin particularly enriched, which is consistent with other red algal LHCIs. A Qy peak of chlorophyll a in the LHCI absorption spectrum was blue-shifted compared with those of PSI-LHCI and PSI, and a fluorescence emission peak was similarly shifted to shorter wavelengths. Based on these results, we discuss the diversity of LHC proteins and RedCAP in red algal PSI-LHCI supercomplexes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信