Inhibition of Kv1.3 channel restrains macrophage M2 polarization and ameliorates renal fibrosis via regulating STAT6 phosphorylation

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Yanshan Chen , Yuanxing Zhi , Hailin Zhong , Liang Ma , Xinpei Gu , Yijing Cai , Jingjing Huang , Xin Yi , Xiaoyan Wu , Ken Kin Lam Yung , Pingzheng Zhou
{"title":"Inhibition of Kv1.3 channel restrains macrophage M2 polarization and ameliorates renal fibrosis via regulating STAT6 phosphorylation","authors":"Yanshan Chen ,&nbsp;Yuanxing Zhi ,&nbsp;Hailin Zhong ,&nbsp;Liang Ma ,&nbsp;Xinpei Gu ,&nbsp;Yijing Cai ,&nbsp;Jingjing Huang ,&nbsp;Xin Yi ,&nbsp;Xiaoyan Wu ,&nbsp;Ken Kin Lam Yung ,&nbsp;Pingzheng Zhou","doi":"10.1016/j.phrs.2025.107623","DOIUrl":null,"url":null,"abstract":"<div><div>Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.3, one of the primary potassium channels which is expressed in both innate and adaptive immunity, on macrophage M2 polarization and renal fibrosis. Our findings demonstrated that genetic or pharmacological inhibition of Kv1.3 significantly suppressed the expression of M2 markers and STAT6 phosphorylation. Furthermore, pharmacological inhibition of Kv1.3 by PAP-1 attenuated renal inflammation and fibrosis with decreased infiltration of macrophage infiltration and M2 polarization by employing the unilateral ureteral obstruction (UUO) renal fibrosis model. Mechanistically, we revealed that Kv1.3 was required for STAT6 phosphorylation in a mitochondria membrane potential dependent manner. Collectively, this study suggests that Kv1.3 is essential for macrophage M2 polarization and highlights the potential of Kv1.3 blockers as therapeutic agents for renal fibrosis and other M2 polarization-related diseases.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"213 ","pages":"Article 107623"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661825000489","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.3, one of the primary potassium channels which is expressed in both innate and adaptive immunity, on macrophage M2 polarization and renal fibrosis. Our findings demonstrated that genetic or pharmacological inhibition of Kv1.3 significantly suppressed the expression of M2 markers and STAT6 phosphorylation. Furthermore, pharmacological inhibition of Kv1.3 by PAP-1 attenuated renal inflammation and fibrosis with decreased infiltration of macrophage infiltration and M2 polarization by employing the unilateral ureteral obstruction (UUO) renal fibrosis model. Mechanistically, we revealed that Kv1.3 was required for STAT6 phosphorylation in a mitochondria membrane potential dependent manner. Collectively, this study suggests that Kv1.3 is essential for macrophage M2 polarization and highlights the potential of Kv1.3 blockers as therapeutic agents for renal fibrosis and other M2 polarization-related diseases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信