A deep learning framework for in silico screening of anticancer drugs at the single-cell level.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2024-12-10 eCollection Date: 2025-02-01 DOI:10.1093/nsr/nwae451
Peijing Zhang, Xueyi Wang, Xufeng Cen, Qi Zhang, Yuting Fu, Yuqing Mei, Xinru Wang, Renying Wang, Jingjing Wang, Hongwei Ouyang, Tingbo Liang, Hongguang Xia, Xiaoping Han, Guoji Guo
{"title":"A deep learning framework for <i>in silico</i> screening of anticancer drugs at the single-cell level.","authors":"Peijing Zhang, Xueyi Wang, Xufeng Cen, Qi Zhang, Yuting Fu, Yuqing Mei, Xinru Wang, Renying Wang, Jingjing Wang, Hongwei Ouyang, Tingbo Liang, Hongguang Xia, Xiaoping Han, Guoji Guo","doi":"10.1093/nsr/nwae451","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells. We introduce a deep learning framework named Shennong for <i>in silico</i> screening of anticancer drugs for targeting each of the landscape cell clusters. Utilizing Shennong, we could predict individual cell responses to pharmacologic compounds, evaluate drug candidates' tissue damaging effects, and investigate their corresponding action mechanisms. Prioritized compounds in Shennong's prediction results include FDA-approved drugs currently undergoing clinical trials for new indications, as well as drug candidates reporting anti-tumor activity. Furthermore, the tissue damaging effect prediction aligns with documented injuries and terminated discovery events. This robust and explainable framework has the potential to accelerate the drug discovery process and enhance the accuracy and efficiency of drug screening.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 2","pages":"nwae451"},"PeriodicalIF":16.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae451","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells. We introduce a deep learning framework named Shennong for in silico screening of anticancer drugs for targeting each of the landscape cell clusters. Utilizing Shennong, we could predict individual cell responses to pharmacologic compounds, evaluate drug candidates' tissue damaging effects, and investigate their corresponding action mechanisms. Prioritized compounds in Shennong's prediction results include FDA-approved drugs currently undergoing clinical trials for new indications, as well as drug candidates reporting anti-tumor activity. Furthermore, the tissue damaging effect prediction aligns with documented injuries and terminated discovery events. This robust and explainable framework has the potential to accelerate the drug discovery process and enhance the accuracy and efficiency of drug screening.

求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信