Fast surface reconstruction algorithm with adaptive step size.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0314756
Jingguo Dai, Yeqing Yi, Chengzhi Liu
{"title":"Fast surface reconstruction algorithm with adaptive step size.","authors":"Jingguo Dai, Yeqing Yi, Chengzhi Liu","doi":"10.1371/journal.pone.0314756","DOIUrl":null,"url":null,"abstract":"<p><p>In (Dai et al. 2023), the authors proposed a fast algorithm for surface reconstruction that converges rapidly from point cloud data by alternating Anderson extrapolation with implicit progressive iterative approximation (I-PIA). This algorithm employs a fixed step size during iterations to enhance convergence. To further improve the computational efficiency, an adaptive step size adjustment strategy for surface reconstruction algorithm is investigated. During each iteration, the step size is adaptively chosen based on the current residual-larger residuals may necessitate larger steps, while smaller ones might permit smaller steps. Numerical experiments indicate that, for equivalent reconstruction errors, the adaptive step size algorithm demands substantially fewer iterations and less computation time than the fixed step size approach. These improvements robustly enhance computational performance in surface reconstruction, offering valuable insights for further research and applications.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0314756"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0314756","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In (Dai et al. 2023), the authors proposed a fast algorithm for surface reconstruction that converges rapidly from point cloud data by alternating Anderson extrapolation with implicit progressive iterative approximation (I-PIA). This algorithm employs a fixed step size during iterations to enhance convergence. To further improve the computational efficiency, an adaptive step size adjustment strategy for surface reconstruction algorithm is investigated. During each iteration, the step size is adaptively chosen based on the current residual-larger residuals may necessitate larger steps, while smaller ones might permit smaller steps. Numerical experiments indicate that, for equivalent reconstruction errors, the adaptive step size algorithm demands substantially fewer iterations and less computation time than the fixed step size approach. These improvements robustly enhance computational performance in surface reconstruction, offering valuable insights for further research and applications.

在(Dai 等人,2023 年)一文中,作者提出了一种用于曲面重建的快速算法,该算法通过交替使用安德森外推法和隐式渐进迭代逼近法(I-PIA),从点云数据中快速收敛。该算法在迭代过程中采用固定步长,以提高收敛性。为了进一步提高计算效率,研究了曲面重建算法的自适应步长调整策略。在每次迭代过程中,步长根据当前残差进行自适应选择--残差越大,步长越大;残差越小,步长越小。数值实验表明,在重建误差相当的情况下,自适应步长算法比固定步长方法所需的迭代次数和计算时间要少得多。这些改进有力地提高了曲面重建的计算性能,为进一步的研究和应用提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信