Correlation between rrs gene mutations and amikacin resistance in Mycobacterium abscessus: implications for fitness cost and clinical prevalence.

IF 3.9 2区 医学 Q1 INFECTIOUS DISEASES
Jie Ding, H M Adnan Hameed, Lihua Long, Jingran Zhang, Cuiting Fang, Xirong Tian, Han Zhang, Lijie Li, Chunyu Li, Ruhao Yang, Yamin Gao, Shuai Wang, Tianyu Zhang
{"title":"Correlation between rrs gene mutations and amikacin resistance in Mycobacterium abscessus: implications for fitness cost and clinical prevalence.","authors":"Jie Ding, H M Adnan Hameed, Lihua Long, Jingran Zhang, Cuiting Fang, Xirong Tian, Han Zhang, Lijie Li, Chunyu Li, Ruhao Yang, Yamin Gao, Shuai Wang, Tianyu Zhang","doi":"10.1093/jac/dkae468","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Amikacin is crucial for treating Mycobacterium abscessus (Mab) infections, with resistance primarily attributed to rrs gene mutations. The correlation between specific mutations and amikacin susceptibility, along with the associated fitness cost, requires further investigation.</p><p><strong>Methods: </strong>We isolated spontaneous amikacin-resistant mutants in vitro and identified their mutation sites in the rrs gene via Sanger sequencing, which were then compared with existing reports. Using CRISPR/Cas12a-assisted recombineering, we engineered Mab strains with specific rrs mutations. The growth rate and fitness costs in vitro were evaluated, in conjunction with drug susceptibility testing to determine the relationship between rrs mutations and amikacin resistance.</p><p><strong>Results: </strong>The mutation frequency of Mab for amikacin resistance ranged from 4.68 × 10⁻⁷ to 9.38 × 10⁻⁹. Three rrs mutation sites (A1375G, C1376T, G1458T) were identified, with A1375G being the most prevalent. Two additional sites, T1373A and T1465A, have been reported previously but not detected in this study. The five gene-edited strains demonstrated resistance to amikacin and cross-resistance to other aminoglycosides, and all exhibited slower in vitro growth rates than the wild-type Mab. Competitive experiments revealed that T1373A and T1465A have high fitness costs, while C1376T and G1458T have weak fitness costs and A1375G shows no fitness costs.</p><p><strong>Conclusions: </strong>Our findings confirm that rrs mutations confer high-level amikacin resistance, with the limited mutation spectrum in clinical isolates possibly linked to higher spontaneous mutation frequency and lower fitness costs.</p>","PeriodicalId":14969,"journal":{"name":"Journal of Antimicrobial Chemotherapy","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antimicrobial Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jac/dkae468","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Amikacin is crucial for treating Mycobacterium abscessus (Mab) infections, with resistance primarily attributed to rrs gene mutations. The correlation between specific mutations and amikacin susceptibility, along with the associated fitness cost, requires further investigation.

Methods: We isolated spontaneous amikacin-resistant mutants in vitro and identified their mutation sites in the rrs gene via Sanger sequencing, which were then compared with existing reports. Using CRISPR/Cas12a-assisted recombineering, we engineered Mab strains with specific rrs mutations. The growth rate and fitness costs in vitro were evaluated, in conjunction with drug susceptibility testing to determine the relationship between rrs mutations and amikacin resistance.

Results: The mutation frequency of Mab for amikacin resistance ranged from 4.68 × 10⁻⁷ to 9.38 × 10⁻⁹. Three rrs mutation sites (A1375G, C1376T, G1458T) were identified, with A1375G being the most prevalent. Two additional sites, T1373A and T1465A, have been reported previously but not detected in this study. The five gene-edited strains demonstrated resistance to amikacin and cross-resistance to other aminoglycosides, and all exhibited slower in vitro growth rates than the wild-type Mab. Competitive experiments revealed that T1373A and T1465A have high fitness costs, while C1376T and G1458T have weak fitness costs and A1375G shows no fitness costs.

Conclusions: Our findings confirm that rrs mutations confer high-level amikacin resistance, with the limited mutation spectrum in clinical isolates possibly linked to higher spontaneous mutation frequency and lower fitness costs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
5.80%
发文量
423
审稿时长
2-4 weeks
期刊介绍: The Journal publishes articles that further knowledge and advance the science and application of antimicrobial chemotherapy with antibiotics and antifungal, antiviral and antiprotozoal agents. The Journal publishes primarily in human medicine, and articles in veterinary medicine likely to have an impact on global health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信