Decoherence and vibrational energy relaxation of the electronically excited PtPOP complex in solution.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Benedikt O Birgisson, Asmus Ougaard Dohn, Hannes Jónsson, Gianluca Levi
{"title":"Decoherence and vibrational energy relaxation of the electronically excited PtPOP complex in solution.","authors":"Benedikt O Birgisson, Asmus Ougaard Dohn, Hannes Jónsson, Gianluca Levi","doi":"10.1063/5.0241573","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions. The decoherence time of the Pt-Pt vibration dominating the photoinduced dynamics is found to be ∼1.6 ps in both solvents. This is in excellent agreement with experimental measurements in water, where intersystem crossing is slow (>10 ps). Pathways for the flow of excess energy are identified by monitoring the power of the solvent on vibrational modes. The latter are obtained as generalized normal modes from the velocity covariances, and the power is computed using QM/MM embedding forces. Excess vibrational energy is found to be predominantly released through short-range repulsive and attractive interactions between the ligand atoms and surrounding solvent molecules, whereas solute-solvent interactions involving the Pt atoms are less important. Since photoexcitation deposits most of the excess energy into Pt-Pt vibrations, energy dissipation to the solvent is inefficient. This study reveals the mechanism behind the exceptionally long vibrational coherence of the photoexcited PtPOP complex in solution and underscores the importance of short-range interactions for accurate simulations of vibrational energy relaxation of solvated molecules.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0241573","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions. The decoherence time of the Pt-Pt vibration dominating the photoinduced dynamics is found to be ∼1.6 ps in both solvents. This is in excellent agreement with experimental measurements in water, where intersystem crossing is slow (>10 ps). Pathways for the flow of excess energy are identified by monitoring the power of the solvent on vibrational modes. The latter are obtained as generalized normal modes from the velocity covariances, and the power is computed using QM/MM embedding forces. Excess vibrational energy is found to be predominantly released through short-range repulsive and attractive interactions between the ligand atoms and surrounding solvent molecules, whereas solute-solvent interactions involving the Pt atoms are less important. Since photoexcitation deposits most of the excess energy into Pt-Pt vibrations, energy dissipation to the solvent is inefficient. This study reveals the mechanism behind the exceptionally long vibrational coherence of the photoexcited PtPOP complex in solution and underscores the importance of short-range interactions for accurate simulations of vibrational energy relaxation of solvated molecules.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信