A deep learning pipeline for three-dimensional brain-wide mapping of local neuronal ensembles in teravoxel light-sheet microscopy

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Ahmadreza Attarpour, Jonas Osmann, Anthony Rinaldi, Tianbo Qi, Neeraj Lal, Shruti Patel, Matthew Rozak, Fengqing Yu, Newton Cho, Jordan Squair, JoAnne McLaurin, Misha Raffiee, Karl Deisseroth, Gregoire Courtine, Li Ye, Bojana Stefanovic, Maged Goubran
{"title":"A deep learning pipeline for three-dimensional brain-wide mapping of local neuronal ensembles in teravoxel light-sheet microscopy","authors":"Ahmadreza Attarpour, Jonas Osmann, Anthony Rinaldi, Tianbo Qi, Neeraj Lal, Shruti Patel, Matthew Rozak, Fengqing Yu, Newton Cho, Jordan Squair, JoAnne McLaurin, Misha Raffiee, Karl Deisseroth, Gregoire Courtine, Li Ye, Bojana Stefanovic, Maged Goubran","doi":"10.1038/s41592-024-02583-1","DOIUrl":null,"url":null,"abstract":"Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity. Validation against state-of-the-art segmentation and detection methods on unseen datasets demonstrated ACE’s high generalizability and performance. Applying ACE in two distinct neurobiological contexts, we discovered subregional effects missed by existing atlas-based analyses and showcase ACE’s ability to reveal localized or laminar neuronal activity brain-wide. Our open-source pipeline enables whole-brain mapping of neuronal ensembles at a high level of precision across a wide range of neuroscientific applications. The ACE pipeline utilized deep learning and advanced statistics for mapping neural activity at a granular level that is independent of atlas-defined regions.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"600-611"},"PeriodicalIF":36.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02583-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02583-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity. Validation against state-of-the-art segmentation and detection methods on unseen datasets demonstrated ACE’s high generalizability and performance. Applying ACE in two distinct neurobiological contexts, we discovered subregional effects missed by existing atlas-based analyses and showcase ACE’s ability to reveal localized or laminar neuronal activity brain-wide. Our open-source pipeline enables whole-brain mapping of neuronal ensembles at a high level of precision across a wide range of neuroscientific applications. The ACE pipeline utilized deep learning and advanced statistics for mapping neural activity at a granular level that is independent of atlas-defined regions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信