Xue Han , Minyi Zhao , Kexin Wang , Weiwei Ma , Binghuo Wu , Yueyang Yu , Xiaomei Liang , Wenjian Mo , Xiaowei Chen , Ming Zhou , Yumiao Li , Shilin Xu , Uet Yu , Yalan Yang , Peng Lei , Ruiqing Zhou , Shunqing Wang
{"title":"IFN alpha signaling drives hematopoietic stem cells malfunction under acute inflammation","authors":"Xue Han , Minyi Zhao , Kexin Wang , Weiwei Ma , Binghuo Wu , Yueyang Yu , Xiaomei Liang , Wenjian Mo , Xiaowei Chen , Ming Zhou , Yumiao Li , Shilin Xu , Uet Yu , Yalan Yang , Peng Lei , Ruiqing Zhou , Shunqing Wang","doi":"10.1016/j.intimp.2025.114012","DOIUrl":null,"url":null,"abstract":"<div><div>Inflammation stimulation regulates the activity of hematopoietic stem cells (HSCs) through direct-sensing and cytokine-mediation. It is known that HSCs directly sense lipopolysaccharide (LPS), a classical infection-related inflammatory signal, via toll like receptor 4 (TLR4) and subsequently become active. However, the mechanism underlying the activity change of HSCs induced by LPS remains incompletely disclosed. Here we explored that under LPS stimulation, the activation of interferon alpha (IFNα) signal pathway resulted in the activation and exhaustion of HSCs in vitro, indicating HSCs directly responded to LPS through the downstream IFNα signal pathway. We also discovered the increased production of IFNα in mice bone marrow and expression of interferon-α/β receptor (IFNAR) on mice HSCs after LPS stimulation. Creatine, an IFNα inhibitor, could reverse the activation and prevent the exhaustion of HSCs caused by LPS by suppressing the expressions of genes associated with the IFNα signal pathway both in vitro and in vivo. Furthermore, we found that the IFNAR deficiency in mice effectively protected HSCs from activation, elevated apoptosis and impaired reconstitution ability under LPS stimulation in vivo. This finding further supports the notion that LPS activates and injures HSCs indirectly via promoting IFNα secretion in the bone marrow environment. Overall, our findings reveal that LPS causes the injury to HSCs either through direct or cytokine-mediated indirect activation of the IFNα signal pathway.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"Article 114012"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925000013","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation stimulation regulates the activity of hematopoietic stem cells (HSCs) through direct-sensing and cytokine-mediation. It is known that HSCs directly sense lipopolysaccharide (LPS), a classical infection-related inflammatory signal, via toll like receptor 4 (TLR4) and subsequently become active. However, the mechanism underlying the activity change of HSCs induced by LPS remains incompletely disclosed. Here we explored that under LPS stimulation, the activation of interferon alpha (IFNα) signal pathway resulted in the activation and exhaustion of HSCs in vitro, indicating HSCs directly responded to LPS through the downstream IFNα signal pathway. We also discovered the increased production of IFNα in mice bone marrow and expression of interferon-α/β receptor (IFNAR) on mice HSCs after LPS stimulation. Creatine, an IFNα inhibitor, could reverse the activation and prevent the exhaustion of HSCs caused by LPS by suppressing the expressions of genes associated with the IFNα signal pathway both in vitro and in vivo. Furthermore, we found that the IFNAR deficiency in mice effectively protected HSCs from activation, elevated apoptosis and impaired reconstitution ability under LPS stimulation in vivo. This finding further supports the notion that LPS activates and injures HSCs indirectly via promoting IFNα secretion in the bone marrow environment. Overall, our findings reveal that LPS causes the injury to HSCs either through direct or cytokine-mediated indirect activation of the IFNα signal pathway.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.