{"title":"Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.","authors":"Qi Luo, Ling Liu","doi":"10.1007/s11626-025-01017-2","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by H<sub>2</sub>O<sub>2</sub> to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence. Compared to normal HFF-1 cells, senescent HFF-1 cells exhibited weaker proliferative capacity, marked apoptosis, and G0-G1 cell cycle arrest. These cells also showed lower mitochondrial membrane potential and ATP production, higher expression of inflammatory factors, oxidative damage, and increased levels of senescence. Treatment with Mdivi-1 or ASCs enhanced HFF-1 cell proliferation, reduced apoptosis and cell cycle arrest, increased mitochondrial membrane potential and ATP production, decreased the expression of inflammatory factors, and mitigated oxidative stress, thereby reducing the degree of cellular senescence. Concurrent intervention with Mdivi-1 and ASCs further diminishes the impacts of cellular senescence. In conclusion, ASCs regulate mitochondrial dynamics (promoting mitochondrial fusion and inhibiting mitochondrial fission), enhance ATP production, and upregulate mitochondrial membrane potential, thereby alleviating cell cycle arrest, apoptosis, inflammatory responses, and oxidative stress induced by senescence in HFF-1 cells.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01017-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by H2O2 to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence. Compared to normal HFF-1 cells, senescent HFF-1 cells exhibited weaker proliferative capacity, marked apoptosis, and G0-G1 cell cycle arrest. These cells also showed lower mitochondrial membrane potential and ATP production, higher expression of inflammatory factors, oxidative damage, and increased levels of senescence. Treatment with Mdivi-1 or ASCs enhanced HFF-1 cell proliferation, reduced apoptosis and cell cycle arrest, increased mitochondrial membrane potential and ATP production, decreased the expression of inflammatory factors, and mitigated oxidative stress, thereby reducing the degree of cellular senescence. Concurrent intervention with Mdivi-1 and ASCs further diminishes the impacts of cellular senescence. In conclusion, ASCs regulate mitochondrial dynamics (promoting mitochondrial fusion and inhibiting mitochondrial fission), enhance ATP production, and upregulate mitochondrial membrane potential, thereby alleviating cell cycle arrest, apoptosis, inflammatory responses, and oxidative stress induced by senescence in HFF-1 cells.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.