Predicting Multijoint Maximal Eccentric and Concentric Strength With Force-Velocity Jump Mechanics in Collegiate Athletes.

IF 3.5 2区 医学 Q1 PHYSIOLOGY
Zachary J McClean, Mark McKenzie, Matthew Zukowski, Landon Foley, Kati Pasanen, Walter Herzog, Dustin Nabhan, Matthew J Jordan
{"title":"Predicting Multijoint Maximal Eccentric and Concentric Strength With Force-Velocity Jump Mechanics in Collegiate Athletes.","authors":"Zachary J McClean, Mark McKenzie, Matthew Zukowski, Landon Foley, Kati Pasanen, Walter Herzog, Dustin Nabhan, Matthew J Jordan","doi":"10.1123/ijspp.2024-0439","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Maximal muscle strength is often assessed with single-joint or repetition-maximum testing. The purpose of this study was to evaluate the reliability of countermovement-jump (CMJ) velocity-load testing and assess the relationship between CMJ velocity-load kinetics and concentric-isometric-eccentric multijoint leg-extension strength tested on a robotic servomotor leg press in trained athletes.</p><p><strong>Methods: </strong>University athletes (N = 203; 52% female) completed 3 concentric, isometric, and eccentric maximum voluntary leg-extension contractions on the robotic leg press, followed by CMJ velocity-load testing with an additional external load of 0% (CMJBW), 30% (CMJ30), and 60% (CMJ60) of body mass. A linear model was fit for the CMJ takeoff velocity-load relationship to obtain the load intercept. Force-velocity parameters were obtained for the CMJ eccentric deceleration and concentric phases. Linear mixed-effects models were constructed to predict concentric, isometric, and eccentric leg-press force using the CMJ takeoff velocity-load relationship and CMJ kinetics.</p><p><strong>Results: </strong>Isometric leg-press strength was predicted by load intercept and sex (P < .001, R2 = .565, prediction error = 14%). Concentric leg-press strength was predicted by load intercept, CMJ60 concentric impulse, and sex (P < .001, R2 = .657, prediction error = 10%). Eccentric leg-press strength was predicted by minimum downward velocity, CMJ60 eccentric deceleration impulse, and sex (P < .001, R2 = .359, prediction error = 14%).</p><p><strong>Conclusions: </strong>Given the relevance of muscle-strength testing for sport performance and injury prevention, assessing force-velocity mechanics with loaded CMJ testing is a reliable and viable approach to predict maximal concentric, isometric, and eccentric leg-press strength in competitive athletes.</p>","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":" ","pages":"1-12"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2024-0439","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Maximal muscle strength is often assessed with single-joint or repetition-maximum testing. The purpose of this study was to evaluate the reliability of countermovement-jump (CMJ) velocity-load testing and assess the relationship between CMJ velocity-load kinetics and concentric-isometric-eccentric multijoint leg-extension strength tested on a robotic servomotor leg press in trained athletes.

Methods: University athletes (N = 203; 52% female) completed 3 concentric, isometric, and eccentric maximum voluntary leg-extension contractions on the robotic leg press, followed by CMJ velocity-load testing with an additional external load of 0% (CMJBW), 30% (CMJ30), and 60% (CMJ60) of body mass. A linear model was fit for the CMJ takeoff velocity-load relationship to obtain the load intercept. Force-velocity parameters were obtained for the CMJ eccentric deceleration and concentric phases. Linear mixed-effects models were constructed to predict concentric, isometric, and eccentric leg-press force using the CMJ takeoff velocity-load relationship and CMJ kinetics.

Results: Isometric leg-press strength was predicted by load intercept and sex (P < .001, R2 = .565, prediction error = 14%). Concentric leg-press strength was predicted by load intercept, CMJ60 concentric impulse, and sex (P < .001, R2 = .657, prediction error = 10%). Eccentric leg-press strength was predicted by minimum downward velocity, CMJ60 eccentric deceleration impulse, and sex (P < .001, R2 = .359, prediction error = 14%).

Conclusions: Given the relevance of muscle-strength testing for sport performance and injury prevention, assessing force-velocity mechanics with loaded CMJ testing is a reliable and viable approach to predict maximal concentric, isometric, and eccentric leg-press strength in competitive athletes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
12.10%
发文量
199
审稿时长
6-12 weeks
期刊介绍: The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信