Fluid secretion and luminal pressure control lateral branching morphogenesis in the embryonic avian lung.

IF 2.5 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY
Shelby R Mohr-Allen, Jason P Gleghorn, Victor D Varner
{"title":"Fluid secretion and luminal pressure control lateral branching morphogenesis in the embryonic avian lung.","authors":"Shelby R Mohr-Allen, Jason P Gleghorn, Victor D Varner","doi":"10.1016/j.ydbio.2025.01.016","DOIUrl":null,"url":null,"abstract":"<p><p>During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis. However, it is not clear if altered tissue mechanics influence patterns of proliferation along the embryonic airway epithelium nor if individual branching modes are affected differently by changes in luminal pressure. Here, we focused on mechanisms of lateral branching and used as a model system the embryonic avian lung, which forms exclusively via this branching mode during early development. We used microinjected fluid droplets or pharmacological modulators of fluid secretion to alter luminal fluid pressure either locally or globally within cultured embryonic lungs. Somewhat surprisingly, we found both local and global increases in luminal pressure to suppress the formation of new lateral branches while also promoting increased epithelial proliferation. In a consistent manner, decreased luminal pressure led to an increase in lateral branching morphogenesis. Morphometric analysis of airway branching patterns revealed that altered luminal pressure shifts the overall branching program, rather than simply changing rates of morphogenesis. Taken together, these results highlight the importance of mechanical forces during airway branching and suggest that different branching modes may be affected differently by luminal fluid pressure.</p>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":" ","pages":"251-263"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ydbio.2025.01.016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis. However, it is not clear if altered tissue mechanics influence patterns of proliferation along the embryonic airway epithelium nor if individual branching modes are affected differently by changes in luminal pressure. Here, we focused on mechanisms of lateral branching and used as a model system the embryonic avian lung, which forms exclusively via this branching mode during early development. We used microinjected fluid droplets or pharmacological modulators of fluid secretion to alter luminal fluid pressure either locally or globally within cultured embryonic lungs. Somewhat surprisingly, we found both local and global increases in luminal pressure to suppress the formation of new lateral branches while also promoting increased epithelial proliferation. In a consistent manner, decreased luminal pressure led to an increase in lateral branching morphogenesis. Morphometric analysis of airway branching patterns revealed that altered luminal pressure shifts the overall branching program, rather than simply changing rates of morphogenesis. Taken together, these results highlight the importance of mechanical forces during airway branching and suggest that different branching modes may be affected differently by luminal fluid pressure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental biology
Developmental biology 生物-发育生物学
CiteScore
5.30
自引率
3.70%
发文量
182
审稿时长
1.5 months
期刊介绍: Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信