Insights into prescribing patterns for antidepressants: an evidence-based analysis.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Hua Min, Farrokh Alemi
{"title":"Insights into prescribing patterns for antidepressants: an evidence-based analysis.","authors":"Hua Min, Farrokh Alemi","doi":"10.1186/s12911-025-02886-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antidepressants are a primary treatment for depression, yet prescribing them poses significant challenges due to the absence of clear guidelines for selecting the most suitable option for individual patients. This study aimed to analyze prescribing patterns for antidepressants across healthcare providers, including physicians, physician assistants, nurse practitioners, and pharmacists, to better understand the complex factors influencing these patterns in the management of depression.</p><p><strong>Methods: </strong>Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify variables that explained the variation in the prescribed antidepressants, utilizing a large number of claims. Models were created to identify the prescription patterns of the 14 most common antidepressants, including amitriptyline, bupropion, citalopram, desvenlafaxine, doxepin, duloxetine, escitalopram, fluoxetine, mirtazapine, nortriptyline, paroxetine, sertraline, trazodone, and venlafaxine. The accuracy of predictions was measured through the Area under the Receiver Operating Curve (AROC).</p><p><strong>Results: </strong>Our analysis revealed several key factors influencing prescribing patterns, including patients' comorbidities, previous medications, age, and gender. A history of high antidepressant use (four or more prior medications) was the most common factor across antidepressants. Age influenced prescribing patterns, with mirtazapine and trazodone more frequent among older patients, while fluoxetine and sertraline were more common in younger individuals. Condition-specific factors included trazodone for insomnia, and amitriptyline or nortriptyline for headaches. Paroxetine, venlafaxine, and sertraline more often prescribed to females, while bupropion and doxepin were commonly prescribed for patients with tobacco use disorder and opioid dependence. Predictive factors per medicine ranged from 51 (doxepin) to 168 (citalopram), with cross-validated AROC scores averaging 76.3%.</p><p><strong>Conclusions: </strong>Our findings provide valuable insights into the nuanced factors that shape evidence-based antidepressant prescribing practices, offering a foundation for more personalized, effective depression treatment. Further research is needed to validate these models in other extant databases. These findings contribute to a more comprehensive understanding of antidepressant prescribing practices and have the potential to improve patient outcomes in the management of depression.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"42"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02886-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Antidepressants are a primary treatment for depression, yet prescribing them poses significant challenges due to the absence of clear guidelines for selecting the most suitable option for individual patients. This study aimed to analyze prescribing patterns for antidepressants across healthcare providers, including physicians, physician assistants, nurse practitioners, and pharmacists, to better understand the complex factors influencing these patterns in the management of depression.

Methods: Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify variables that explained the variation in the prescribed antidepressants, utilizing a large number of claims. Models were created to identify the prescription patterns of the 14 most common antidepressants, including amitriptyline, bupropion, citalopram, desvenlafaxine, doxepin, duloxetine, escitalopram, fluoxetine, mirtazapine, nortriptyline, paroxetine, sertraline, trazodone, and venlafaxine. The accuracy of predictions was measured through the Area under the Receiver Operating Curve (AROC).

Results: Our analysis revealed several key factors influencing prescribing patterns, including patients' comorbidities, previous medications, age, and gender. A history of high antidepressant use (four or more prior medications) was the most common factor across antidepressants. Age influenced prescribing patterns, with mirtazapine and trazodone more frequent among older patients, while fluoxetine and sertraline were more common in younger individuals. Condition-specific factors included trazodone for insomnia, and amitriptyline or nortriptyline for headaches. Paroxetine, venlafaxine, and sertraline more often prescribed to females, while bupropion and doxepin were commonly prescribed for patients with tobacco use disorder and opioid dependence. Predictive factors per medicine ranged from 51 (doxepin) to 168 (citalopram), with cross-validated AROC scores averaging 76.3%.

Conclusions: Our findings provide valuable insights into the nuanced factors that shape evidence-based antidepressant prescribing practices, offering a foundation for more personalized, effective depression treatment. Further research is needed to validate these models in other extant databases. These findings contribute to a more comprehensive understanding of antidepressant prescribing practices and have the potential to improve patient outcomes in the management of depression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信