{"title":"Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology.","authors":"Emile Youssef, Brandon Fletcher, Dannelle Palmer","doi":"10.3389/fmed.2024.1527600","DOIUrl":null,"url":null,"abstract":"<p><p>Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors. CRISPR-Cas9, a revolutionary tool in precision medicine, enables precise editing of cancer-driving mutations, enhancing immune responses and disrupting tumor growth mechanisms. Additionally, emerging approaches target ferroptosis-a regulated, iron-dependent form of cell death-offering new possibilities for selectively inducing tumor cell death in resistant cancers. Despite significant breakthroughs, challenges such as tumor heterogeneity, immune evasion, and the immunosuppressive tumor microenvironment (TME) remain. To overcome these barriers, novel approaches like dual-targeting, armored CAR-T cells, and combination therapies with immune checkpoint inhibitors and ferroptosis inducers are being explored. Additionally, the rise of allogeneic \"off-the-shelf\" CAR-T therapies offers scalable and more accessible treatment options. The regulatory landscape is evolving to accommodate these advancements, with frameworks like RMAT (Regenerative Medicine Advanced Therapy) in the U.S. and ATMP (Advanced Therapy Medicinal Products) in Europe fast-tracking the approval of gene therapies. However, ethical considerations surrounding CRISPR-based gene editing-such as off-target effects, germline editing, and ensuring equitable access-remain at the forefront, requiring ongoing ethical oversight. Advances in non-viral delivery systems, such as lipid nanoparticles (LNPs) and exosomes, are improving the safety and efficacy of gene therapies. By integrating these innovations with combination therapies and addressing regulatory and ethical concerns, gene therapy is poised to revolutionize cancer treatment, providing durable, effective, and personalized solutions for both hematologic and solid tumors.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"11 ","pages":"1527600"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2024.1527600","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors. CRISPR-Cas9, a revolutionary tool in precision medicine, enables precise editing of cancer-driving mutations, enhancing immune responses and disrupting tumor growth mechanisms. Additionally, emerging approaches target ferroptosis-a regulated, iron-dependent form of cell death-offering new possibilities for selectively inducing tumor cell death in resistant cancers. Despite significant breakthroughs, challenges such as tumor heterogeneity, immune evasion, and the immunosuppressive tumor microenvironment (TME) remain. To overcome these barriers, novel approaches like dual-targeting, armored CAR-T cells, and combination therapies with immune checkpoint inhibitors and ferroptosis inducers are being explored. Additionally, the rise of allogeneic "off-the-shelf" CAR-T therapies offers scalable and more accessible treatment options. The regulatory landscape is evolving to accommodate these advancements, with frameworks like RMAT (Regenerative Medicine Advanced Therapy) in the U.S. and ATMP (Advanced Therapy Medicinal Products) in Europe fast-tracking the approval of gene therapies. However, ethical considerations surrounding CRISPR-based gene editing-such as off-target effects, germline editing, and ensuring equitable access-remain at the forefront, requiring ongoing ethical oversight. Advances in non-viral delivery systems, such as lipid nanoparticles (LNPs) and exosomes, are improving the safety and efficacy of gene therapies. By integrating these innovations with combination therapies and addressing regulatory and ethical concerns, gene therapy is poised to revolutionize cancer treatment, providing durable, effective, and personalized solutions for both hematologic and solid tumors.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world