Carbonyl reductase 1: a novel regulator of blood pressure in Down syndrome.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alexandra J Malbon, Alicja Czopek, Andrew M Beekman, Zoë R Goddard, Aileen Boyle, Jessica R Ivy, Kevin Stewart, Scott G Denham, Joanna P Simpson, Natalie Z Homer, Brian R Walker, Neeraj Dhaun, Matthew A Bailey, Ruth A Morgan
{"title":"Carbonyl reductase 1: a novel regulator of blood pressure in Down syndrome.","authors":"Alexandra J Malbon, Alicja Czopek, Andrew M Beekman, Zoë R Goddard, Aileen Boyle, Jessica R Ivy, Kevin Stewart, Scott G Denham, Joanna P Simpson, Natalie Z Homer, Brian R Walker, Neeraj Dhaun, Matthew A Bailey, Ruth A Morgan","doi":"10.1042/BSR20241636","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately one in every 800 children is born with the severe aneuploid condition of Down syndrome (DS), a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype, therefore therapeutic interventions are limited. Carbonyl reductase 1 (CBR1) is an enzyme contributing to the metabolism of prostaglandins, glucocorticoids, reactive oxygen species and neurotransmitters, encoded by a gene (CBR1) positioned on chromosome 21 with the potential to affect blood pressure. Utilising telemetric blood pressure measurement of genetically modified mice, we tested the hypothesis that CBR1 influences blood pressure and that its overexpression contributes to hypotension in DS by evaluating possible contributing mechanisms in vitro. In a mouse model of DS (Ts65Dn), which exhibits hypotension, CBR1 activity was increased and pharmacological inhibition of CBR1 ed to increased blood pressure. Mice heterozygous null for Cbr1 had reduced CBR1 enzyme activity and elevated blood pressure. Further experiments indicate that the underlying mechanisms include alterations in both sympathetic tone and prostaglandin metabolism. We conclude that CBR1 activity contributes to blood pressure homeostasis and inhibition of CBR1 may present a novel therapeutic opportunity to correct symptomatic hypotension in DS.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":"157-170"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20241636","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately one in every 800 children is born with the severe aneuploid condition of Down syndrome (DS), a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype, therefore therapeutic interventions are limited. Carbonyl reductase 1 (CBR1) is an enzyme contributing to the metabolism of prostaglandins, glucocorticoids, reactive oxygen species and neurotransmitters, encoded by a gene (CBR1) positioned on chromosome 21 with the potential to affect blood pressure. Utilising telemetric blood pressure measurement of genetically modified mice, we tested the hypothesis that CBR1 influences blood pressure and that its overexpression contributes to hypotension in DS by evaluating possible contributing mechanisms in vitro. In a mouse model of DS (Ts65Dn), which exhibits hypotension, CBR1 activity was increased and pharmacological inhibition of CBR1 ed to increased blood pressure. Mice heterozygous null for Cbr1 had reduced CBR1 enzyme activity and elevated blood pressure. Further experiments indicate that the underlying mechanisms include alterations in both sympathetic tone and prostaglandin metabolism. We conclude that CBR1 activity contributes to blood pressure homeostasis and inhibition of CBR1 may present a novel therapeutic opportunity to correct symptomatic hypotension in DS.

羰基还原酶1:唐氏综合症中一种新的血压调节剂。
大约每800个孩子中就有一个出生时患有严重的非整倍体唐氏综合症,即21号染色体三体。低血压(低血压)是与退行性椎体滑移相关的常见疾病,对运动耐受性和生活质量有重大影响。对导致这种低血压表型的因素知之甚少,因此治疗干预是有限的。羰基还原酶1 (CBR1)是一种促进前列腺素、糖皮质激素、活性氧和神经递质代谢的酶,由位于21号染色体上的一个基因(CBR1)编码,具有影响血压的潜力。利用转基因小鼠的遥测血压测量,我们通过评估体外可能的作用机制,验证了CBR1影响血压以及其过表达有助于唐氏综合征低血压的假设。在出现低血压的唐氏综合征(Ts65Dn)小鼠模型中,CBR1活性增加,CBR1的药物抑制使血压升高。Cbr1基因杂合缺失的小鼠Cbr1酶活性降低,血压升高。进一步的实验表明,潜在的机制包括交感神经张力和前列腺素代谢的改变。我们得出结论,CBR1活性有助于血压稳态,抑制CBR1可能为纠正唐氏综合征症状性低血压提供新的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信