Development and internal validation of a metabolism-related model for predicting 30-day mortality in neonatal sepsis.

IF 3.4 3区 医学 Q2 INFECTIOUS DISEASES
Xiangwen Tu, Junkun Chen, Wen Liu
{"title":"Development and internal validation of a metabolism-related model for predicting 30-day mortality in neonatal sepsis.","authors":"Xiangwen Tu, Junkun Chen, Wen Liu","doi":"10.1186/s12879-025-10527-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Neonatal sepsis, a severe infectious disease associated with high mortality rates, is characterized by metabolic disturbances that play a crucial role in its progression. The aim of this study is to develop a metabolism-related model for assessing 30-day mortality in neonatal sepsis.</p><p><strong>Methods: </strong>The clinical data of neonatal sepsis at Ganzhou Women and Children's Health Care Hospital from January 2019 to December 2022 were retrospectively analyzed. Neonatal sepsis cases were divided into survival and non-survival groups. Multivariate logistic regression analysis was used to identify the independent risk factors for 30-day mortality. A nomogram model was developed based on these risk factors. Internal validation of the model was performed using 10-fold cross-validation. The predictive performance was evaluated through receiver operating characteristic (ROC) curves and calibration curve analyses. Decision curve analysis (DCA) was conducted to evaluate the clinical applicability of the developed model.</p><p><strong>Results: </strong>The study included a total of 156 cases of neonatal sepsis. Multivariate logistic regression analysis revealed that alanine(ALA), citrulline(CIT)), octadecanoylcarnitine(C18) and methionine(MET) were identified as independent risk factors for 30-day mortality of neonatal sepsis. The ROC curve showed an area under the curve of AUC = 0.866 (95% CI 0.796-0.936, P < 0.05). The calibration curve and DCA indicated excellent performance of the model.</p><p><strong>Conclusion: </strong>This study establishes a predictive model for neonatal sepsis-associated 30-day mortality, effectively capturing the perturbations in amino acid metabolism and fatty acid oxidation, thereby demonstrating robust predictive capabilities.</p>","PeriodicalId":8981,"journal":{"name":"BMC Infectious Diseases","volume":"25 1","pages":"121"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12879-025-10527-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Neonatal sepsis, a severe infectious disease associated with high mortality rates, is characterized by metabolic disturbances that play a crucial role in its progression. The aim of this study is to develop a metabolism-related model for assessing 30-day mortality in neonatal sepsis.

Methods: The clinical data of neonatal sepsis at Ganzhou Women and Children's Health Care Hospital from January 2019 to December 2022 were retrospectively analyzed. Neonatal sepsis cases were divided into survival and non-survival groups. Multivariate logistic regression analysis was used to identify the independent risk factors for 30-day mortality. A nomogram model was developed based on these risk factors. Internal validation of the model was performed using 10-fold cross-validation. The predictive performance was evaluated through receiver operating characteristic (ROC) curves and calibration curve analyses. Decision curve analysis (DCA) was conducted to evaluate the clinical applicability of the developed model.

Results: The study included a total of 156 cases of neonatal sepsis. Multivariate logistic regression analysis revealed that alanine(ALA), citrulline(CIT)), octadecanoylcarnitine(C18) and methionine(MET) were identified as independent risk factors for 30-day mortality of neonatal sepsis. The ROC curve showed an area under the curve of AUC = 0.866 (95% CI 0.796-0.936, P < 0.05). The calibration curve and DCA indicated excellent performance of the model.

Conclusion: This study establishes a predictive model for neonatal sepsis-associated 30-day mortality, effectively capturing the perturbations in amino acid metabolism and fatty acid oxidation, thereby demonstrating robust predictive capabilities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Infectious Diseases
BMC Infectious Diseases 医学-传染病学
CiteScore
6.50
自引率
0.00%
发文量
860
审稿时长
3.3 months
期刊介绍: BMC Infectious Diseases is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of infectious and sexually transmitted diseases in humans, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信