Estimating hypothetical estimands with causal inference and missing data estimators in a diabetes trial case study.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujae167
Camila Olarte Parra, Rhian M Daniel, David Wright, Jonathan W Bartlett
{"title":"Estimating hypothetical estimands with causal inference and missing data estimators in a diabetes trial case study.","authors":"Camila Olarte Parra, Rhian M Daniel, David Wright, Jonathan W Bartlett","doi":"10.1093/biomtc/ujae167","DOIUrl":null,"url":null,"abstract":"<p><p>The ICH E9 addendum on estimands in clinical trials provides a framework for precisely defining the treatment effect that is to be estimated, but says little about estimation methods. Here, we report analyses of a clinical trial in type 2 diabetes, targeting the effects of randomized treatment, handling rescue treatment and discontinuation of randomized treatment using the so-called hypothetical strategy. We show how this can be estimated using mixed models for repeated measures, multiple imputation, inverse probability of treatment weighting, G-formula, and G-estimation. We describe their assumptions and practical details of their implementation using packages in R. We report the results of these analyses, broadly finding similar estimates and standard errors across the estimators. We discuss various considerations relevant when choosing an estimation approach, including computational time, how to handle missing data, whether to include post intercurrent event data in the analysis, whether and how to adjust for additional time-varying confounders, and whether and how to model different types of intercurrent event data separately.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae167","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ICH E9 addendum on estimands in clinical trials provides a framework for precisely defining the treatment effect that is to be estimated, but says little about estimation methods. Here, we report analyses of a clinical trial in type 2 diabetes, targeting the effects of randomized treatment, handling rescue treatment and discontinuation of randomized treatment using the so-called hypothetical strategy. We show how this can be estimated using mixed models for repeated measures, multiple imputation, inverse probability of treatment weighting, G-formula, and G-estimation. We describe their assumptions and practical details of their implementation using packages in R. We report the results of these analyses, broadly finding similar estimates and standard errors across the estimators. We discuss various considerations relevant when choosing an estimation approach, including computational time, how to handle missing data, whether to include post intercurrent event data in the analysis, whether and how to adjust for additional time-varying confounders, and whether and how to model different types of intercurrent event data separately.

在糖尿病试验案例研究中用因果推理和缺失数据估计器估计假设性估计。
ICH E9关于临床试验估计的附录为精确定义要估计的治疗效果提供了一个框架,但对估计方法几乎没有说明。在这里,我们报告了一项针对2型糖尿病的临床试验的分析,针对随机治疗的效果,使用所谓的假设策略处理抢救治疗和停止随机治疗。我们展示了如何使用混合模型来估计重复测量、多重imputation、处理加权逆概率、g公式和g估计。我们使用r中的包描述了它们的假设和实现的实际细节。我们报告了这些分析的结果,在估计器中广泛地发现了相似的估计和标准误差。我们讨论了选择估计方法时的各种相关考虑因素,包括计算时间、如何处理缺失数据、是否在分析中包括后并发事件数据、是否以及如何调整额外的时变混杂因素,以及是否以及如何分别为不同类型的并发事件数据建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信