Development of nebulized inhalation delivery for fusion-inhibitory lipopeptides to protect non-human primates against Nipah-Bangladesh infection

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Olivier Reynard , Mathieu Iampietro , Claire Dumont , Sandrine Le Guellec , Stephanie Durand , Marie Moroso , Elise Brisebard , Kévin P. Dhondt , Rodolphe Pelissier , Cyrille Mathieu , Maria Cabrera , Deborah Le Pennec , Lucia Amurri , Christopher Alabi , Sylvain Cardinaud , Matteo Porotto , Anne Moscona , Laurent Vecellio , Branka Horvat
{"title":"Development of nebulized inhalation delivery for fusion-inhibitory lipopeptides to protect non-human primates against Nipah-Bangladesh infection","authors":"Olivier Reynard ,&nbsp;Mathieu Iampietro ,&nbsp;Claire Dumont ,&nbsp;Sandrine Le Guellec ,&nbsp;Stephanie Durand ,&nbsp;Marie Moroso ,&nbsp;Elise Brisebard ,&nbsp;Kévin P. Dhondt ,&nbsp;Rodolphe Pelissier ,&nbsp;Cyrille Mathieu ,&nbsp;Maria Cabrera ,&nbsp;Deborah Le Pennec ,&nbsp;Lucia Amurri ,&nbsp;Christopher Alabi ,&nbsp;Sylvain Cardinaud ,&nbsp;Matteo Porotto ,&nbsp;Anne Moscona ,&nbsp;Laurent Vecellio ,&nbsp;Branka Horvat","doi":"10.1016/j.antiviral.2025.106095","DOIUrl":null,"url":null,"abstract":"<div><div>Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain. Intraperitoneal administration in hamsters showed superb prophylactic activity and promising efficacy, however the intratracheal delivery mode in non-human primates proved intractable and spurred the development of an aerosolized delivery route that could be clinically applicable. We developed an aerosol delivery system in an artificial respiratory 3D model and optimized the combinations of flow rate and particle size for lung deposition. We characterized the nebulizer device and assessed the safety of lipopeptide nebulization in an African green monkey model that mimics human NiV infection. Three nebulized doses of fusion-inhibitory lipopeptide were administered every 24 h, resulting in peptide deposition across multiple regions of both lungs without causing toxicity or adverse hematological and biochemical effects. In peptide-treated monkeys challenged with a lethal dose of NiV-Bangladesh, animals retained robust levels of T and B-lymphocytes in the blood, infection-induced lethality was significantly delayed, and 2 out of 5 monkeys were protected from NiV infection. The present study establishes the safety and feasibility of the nebulizer delivery method for AGM studies. Future studies will compare delivery methods using next-generation fusion-inhibitory anti-NiV lipopeptides to evaluate the potential role of this aerosol delivery approach in achieving a rapid antiviral response.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"235 ","pages":"Article 106095"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016635422500021X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain. Intraperitoneal administration in hamsters showed superb prophylactic activity and promising efficacy, however the intratracheal delivery mode in non-human primates proved intractable and spurred the development of an aerosolized delivery route that could be clinically applicable. We developed an aerosol delivery system in an artificial respiratory 3D model and optimized the combinations of flow rate and particle size for lung deposition. We characterized the nebulizer device and assessed the safety of lipopeptide nebulization in an African green monkey model that mimics human NiV infection. Three nebulized doses of fusion-inhibitory lipopeptide were administered every 24 h, resulting in peptide deposition across multiple regions of both lungs without causing toxicity or adverse hematological and biochemical effects. In peptide-treated monkeys challenged with a lethal dose of NiV-Bangladesh, animals retained robust levels of T and B-lymphocytes in the blood, infection-induced lethality was significantly delayed, and 2 out of 5 monkeys were protected from NiV infection. The present study establishes the safety and feasibility of the nebulizer delivery method for AGM studies. Future studies will compare delivery methods using next-generation fusion-inhibitory anti-NiV lipopeptides to evaluate the potential role of this aerosol delivery approach in achieving a rapid antiviral response.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信