Chloë Radji, Christine Barrault, Roxane Flausse, Nicolas Leveziel, Anne Cantereau, Catherine Bur, Gaëtan Terrasse, Frédéric Becq
{"title":"Modeling ocular surface ion and water transport by generation of lipid- and mucin-producing human meibomian gland and conjunctival epithelial cells.","authors":"Chloë Radji, Christine Barrault, Roxane Flausse, Nicolas Leveziel, Anne Cantereau, Catherine Bur, Gaëtan Terrasse, Frédéric Becq","doi":"10.1152/ajpcell.00560.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the importance of the ocular surface in human physiology and diseases, little is known about ion channel expression, properties, and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse, and especially rabbit animal models. Here, we developed primary human meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells. We show that hConEC and hMGEC produce MUC5AC and lipids, respectively. With cell cultures maintained at the air-liquid interface, we recorded transepithelial short-circuit currents (<i>I</i><sub>sc</sub>) by the Ussing chamber method. We identified in the apical membrane Na<sup>+</sup>, Cl<sup>-</sup>, and K<sup>+</sup> ion channels; amiloride-sensitive epithelial sodium channel (ENaC), cAMP-dependent CFTR, UTP-dependent TMEM16a, and chromanol 293B-sensitive KCNQ1. At the basolateral membrane, we identified bumetanide-sensitive NKCC and barium-sensitive K<sup>+</sup> channels. We also found that vasoactive intestinal peptide, concentration-dependent (EC<sub>50</sub> of 1-8 nM), stimulates the CFTR-dependent <i>I</i><sub>sc</sub> in both cells. Western blot analysis confirms the expression in both cell cultures of βENaC subunit, CFTR, TMEM16a, and KCNQ1 proteins. We recorded water influx by quantitative phase microscopy and identified a cAMP-dependent and mercury-sensitive water flux and identified by Western blot AQP3 and AQP5 proteins in hConEC and hMGEC. Taken together, we propose a model of the ion transports of human conjunctival and meibomian gland epithelial cells that will set the stage for future molecular dissection of the regulation of these transport proteins in the context of tear secretion and related diseases.<b>NEW & NOTEWORTHY</b> We generated human meibomian gland and conjunctival epithelial cells producing lipids and mucins. We identified ion channels including ENaC, CFTR, TMEM16a, and KCNQ1, as well as NKCC. We found that electrolyte and water flux are regulated by signaling pathways mediated by purinergic and VIP receptors. Our findings provide valuable insights into epithelial ion and water transport in the human conjunctiva and meibomian gland, enhancing understanding of these processes in both physiological and disease states.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C856-C871"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00560.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the importance of the ocular surface in human physiology and diseases, little is known about ion channel expression, properties, and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse, and especially rabbit animal models. Here, we developed primary human meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells. We show that hConEC and hMGEC produce MUC5AC and lipids, respectively. With cell cultures maintained at the air-liquid interface, we recorded transepithelial short-circuit currents (Isc) by the Ussing chamber method. We identified in the apical membrane Na+, Cl-, and K+ ion channels; amiloride-sensitive epithelial sodium channel (ENaC), cAMP-dependent CFTR, UTP-dependent TMEM16a, and chromanol 293B-sensitive KCNQ1. At the basolateral membrane, we identified bumetanide-sensitive NKCC and barium-sensitive K+ channels. We also found that vasoactive intestinal peptide, concentration-dependent (EC50 of 1-8 nM), stimulates the CFTR-dependent Isc in both cells. Western blot analysis confirms the expression in both cell cultures of βENaC subunit, CFTR, TMEM16a, and KCNQ1 proteins. We recorded water influx by quantitative phase microscopy and identified a cAMP-dependent and mercury-sensitive water flux and identified by Western blot AQP3 and AQP5 proteins in hConEC and hMGEC. Taken together, we propose a model of the ion transports of human conjunctival and meibomian gland epithelial cells that will set the stage for future molecular dissection of the regulation of these transport proteins in the context of tear secretion and related diseases.NEW & NOTEWORTHY We generated human meibomian gland and conjunctival epithelial cells producing lipids and mucins. We identified ion channels including ENaC, CFTR, TMEM16a, and KCNQ1, as well as NKCC. We found that electrolyte and water flux are regulated by signaling pathways mediated by purinergic and VIP receptors. Our findings provide valuable insights into epithelial ion and water transport in the human conjunctiva and meibomian gland, enhancing understanding of these processes in both physiological and disease states.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.