Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Mohammad Noh Daud
{"title":"Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.","authors":"Mohammad Noh Daud","doi":"10.1021/acs.jpca.4c07219","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field. The research presents a novel method for achieving atomic-scale resolution at nanometer and subfemtosecond levels, enabling observation of electron-proton collisions on an attosecond time scale. It emphasizes the coupling of fields that create resonances in the scattered electron through photon energy exchange with XUV and X-ray pulses, leading to the formation of a Rydberg electron with energy levels up to <i>n</i> = 27 and angular momentum components <i>l</i> = 13 and <i>m</i> = ± 1. The combination of XUV and high-frequency X-ray fields introduces new nonperturbative nonlinear phenomena characterized by differential cross sections derived using the Floquet-Lippmann-Schwinger equation in the first-order Born approximation. The analysis shows that backward-forward scattering involves XUV-electron energy exchange, with peak intensity along the laser polarization vector, while sideways scattering, dominated by X-ray-electron interaction, peaks perpendicular to the polarization. Additionally, the laser-assisted scattering process results in temporary electron capture in a dressed proton-bound state, followed by escape and ejection, with the free electron ponderomotive energy exceeding 10<i>U</i><sub><i>p</i></sub>.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07219","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field. The research presents a novel method for achieving atomic-scale resolution at nanometer and subfemtosecond levels, enabling observation of electron-proton collisions on an attosecond time scale. It emphasizes the coupling of fields that create resonances in the scattered electron through photon energy exchange with XUV and X-ray pulses, leading to the formation of a Rydberg electron with energy levels up to n = 27 and angular momentum components l = 13 and m = ± 1. The combination of XUV and high-frequency X-ray fields introduces new nonperturbative nonlinear phenomena characterized by differential cross sections derived using the Floquet-Lippmann-Schwinger equation in the first-order Born approximation. The analysis shows that backward-forward scattering involves XUV-electron energy exchange, with peak intensity along the laser polarization vector, while sideways scattering, dominated by X-ray-electron interaction, peaks perpendicular to the polarization. Additionally, the laser-assisted scattering process results in temporary electron capture in a dressed proton-bound state, followed by escape and ejection, with the free electron ponderomotive energy exceeding 10Up.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信