Shaohua Zhan, Yan Yang, Shuwei Deng, Xinnan Liu, Liyan Cui, Tianxiao Wang
{"title":"The Ubiquitin Ligase CHIP Accelerates Papillary Thyroid Carcinoma Metastasis via the Transgelin-Matrix Metalloproteinase-9 Axis.","authors":"Shaohua Zhan, Yan Yang, Shuwei Deng, Xinnan Liu, Liyan Cui, Tianxiao Wang","doi":"10.1021/acs.jproteome.4c00726","DOIUrl":null,"url":null,"abstract":"<p><p>The carboxyl-terminus of Hsp70-interacting protein (CHIP) plays crucial roles in tumorigenesis and immunity, with previous studies suggesting a double-edged sword in thyroid cancer. However, its precise functions and underlying molecular mechanisms in thyroid cancer remained unclear. Here, we demonstrate through immunohistochemistry (IHC) that CHIP expression progressively increases from normal thyroid tissue to primary papillary thyroid carcinoma (PTC) and lymph node metastases, with CHIP levels positively correlating with lymph node metastasis (<i>P</i> = 0.006). Moreover, CHIP overexpression enhanced thyroid cancer cell migration and invasion without significantly affecting cell viability. Tandem mass tag (TMT)-based LC-MS/MS analysis revealed that CHIP-regulated differentially expressed proteins, notably transgelin, were predominantly associated with metastasis-related pathways. Western blot, qPCR, and TCGA-THCA cohort data confirmed that CHIP regulates transgelin expression at the protein but not the genetic level. Mechanistically, CHIP promotes extracellular matrix degradation through the transgelin-matrix metalloproteinase-9 (MMP-9) axis, thereby facilitating PTC progression. Collectively, our findings indicate that CHIP expression was closely related to the progression and metastasis of PTC, suggesting that CHIP functions as a novel tumor oncoprotein in PTC via the transgelin-MMP-9 signaling axis.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00726","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The carboxyl-terminus of Hsp70-interacting protein (CHIP) plays crucial roles in tumorigenesis and immunity, with previous studies suggesting a double-edged sword in thyroid cancer. However, its precise functions and underlying molecular mechanisms in thyroid cancer remained unclear. Here, we demonstrate through immunohistochemistry (IHC) that CHIP expression progressively increases from normal thyroid tissue to primary papillary thyroid carcinoma (PTC) and lymph node metastases, with CHIP levels positively correlating with lymph node metastasis (P = 0.006). Moreover, CHIP overexpression enhanced thyroid cancer cell migration and invasion without significantly affecting cell viability. Tandem mass tag (TMT)-based LC-MS/MS analysis revealed that CHIP-regulated differentially expressed proteins, notably transgelin, were predominantly associated with metastasis-related pathways. Western blot, qPCR, and TCGA-THCA cohort data confirmed that CHIP regulates transgelin expression at the protein but not the genetic level. Mechanistically, CHIP promotes extracellular matrix degradation through the transgelin-matrix metalloproteinase-9 (MMP-9) axis, thereby facilitating PTC progression. Collectively, our findings indicate that CHIP expression was closely related to the progression and metastasis of PTC, suggesting that CHIP functions as a novel tumor oncoprotein in PTC via the transgelin-MMP-9 signaling axis.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".