Kinetic and structural investigation of the 4-allyl syringol oxidase from Streptomyces cavernae

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daniel Eggerichs , Heiner G. Weddeling , Laura Alvigini , Tobias Rapsch , Nils Weindorf , Andrea Mattevi , Dirk Tischler
{"title":"Kinetic and structural investigation of the 4-allyl syringol oxidase from Streptomyces cavernae","authors":"Daniel Eggerichs ,&nbsp;Heiner G. Weddeling ,&nbsp;Laura Alvigini ,&nbsp;Tobias Rapsch ,&nbsp;Nils Weindorf ,&nbsp;Andrea Mattevi ,&nbsp;Dirk Tischler","doi":"10.1016/j.abb.2025.110320","DOIUrl":null,"url":null,"abstract":"<div><div>4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from <em>Streptomyces cavernae</em> (<em>Sc</em>4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of <em>Sc</em>4ASO. Kinetic experiments revealed high activities on dimethoxylated substrates (up to 2.9 ± 0.1 s<sup>−1</sup>), but also strong cooperativity between both protein subunits, as well as substrate inhibition in dependency of <em>ortho</em> methoxylation and chain length of the <em>para</em> substituent. Rapid mixing kinetics in combination with the determination of the crystal structure in complex with three substrates allowed to connect the kinetic behavior with never-observed positioning of the conserved residue Y471. Ultimately, the catalytic potential of <em>Sc</em>4ASO was investigated in a 100 mL scale cascade reaction to produce the natural product syringaresinol.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"765 ","pages":"Article 110320"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125000335","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from Streptomyces cavernae (Sc4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of Sc4ASO. Kinetic experiments revealed high activities on dimethoxylated substrates (up to 2.9 ± 0.1 s−1), but also strong cooperativity between both protein subunits, as well as substrate inhibition in dependency of ortho methoxylation and chain length of the para substituent. Rapid mixing kinetics in combination with the determination of the crystal structure in complex with three substrates allowed to connect the kinetic behavior with never-observed positioning of the conserved residue Y471. Ultimately, the catalytic potential of Sc4ASO was investigated in a 100 mL scale cascade reaction to produce the natural product syringaresinol.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信