Facile preparation of multifunctional biomaterials BTO/Ag and their applications in photoelectrochemical sensing, photodegradation and antibacterial activities†
Zhang Kexi, Yan Bingdong, Chen Delun, Wang Xiaohong, Cao Yang, Zhang Xuewei, Hao Wanjun and Tu Jinchun
{"title":"Facile preparation of multifunctional biomaterials BTO/Ag and their applications in photoelectrochemical sensing, photodegradation and antibacterial activities†","authors":"Zhang Kexi, Yan Bingdong, Chen Delun, Wang Xiaohong, Cao Yang, Zhang Xuewei, Hao Wanjun and Tu Jinchun","doi":"10.1039/D4RA07385A","DOIUrl":null,"url":null,"abstract":"<p >With the progress of modern technology and the diversification of societal demands, traditional materials with single properties can no longer meet the requirements of complex and constantly evolving application scenarios. To tackle intricate biomedical applications like disease diagnosis and treatment, scientists are focusing on exploring the design of novel multifunctional biomaterials that possess diverse activities. Bismuth titanate (Bi<small><sub>4</sub></small>Ti<small><sub>3</sub></small>O<small><sub>12</sub></small>, BTO), which has multifunctionality and great application potential, unfortunately suffers from inadequate photocatalytic performance. On the other hand, silver nanoparticles (Ag), known for their antibacterial properties, have relatively limited functions. In this study, we overcame these limitations by combining BTO with Ag to form a BTO/Ag biomultifunctional material. Our experiments showed that the addition of Ag effectively improved BTO's UV absorption ability, decreased electron transfer resistance, and increased carrier concentration. As a result, the photocatalytic performance of BTO/Ag was significantly enhanced, and its photoelectrochemical sensing and photodegradation capabilities were also greatly improved. Moreover, BTO served as an effective substrate, preventing Ag from agglomerating and maximizing its antibacterial potential. In specific performance evaluations, ascorbic acid and methylene blue (MB) were used to study the photoelectrochemical sensing and photodegradation capabilities respectively, while <em>Escherichia coli</em> and <em>Staphylococcus aureus</em> were chosen as test organisms to assess the antibacterial properties. All in all, this research has yielded promising results.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 4","pages":" 2657-2667"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07385a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the progress of modern technology and the diversification of societal demands, traditional materials with single properties can no longer meet the requirements of complex and constantly evolving application scenarios. To tackle intricate biomedical applications like disease diagnosis and treatment, scientists are focusing on exploring the design of novel multifunctional biomaterials that possess diverse activities. Bismuth titanate (Bi4Ti3O12, BTO), which has multifunctionality and great application potential, unfortunately suffers from inadequate photocatalytic performance. On the other hand, silver nanoparticles (Ag), known for their antibacterial properties, have relatively limited functions. In this study, we overcame these limitations by combining BTO with Ag to form a BTO/Ag biomultifunctional material. Our experiments showed that the addition of Ag effectively improved BTO's UV absorption ability, decreased electron transfer resistance, and increased carrier concentration. As a result, the photocatalytic performance of BTO/Ag was significantly enhanced, and its photoelectrochemical sensing and photodegradation capabilities were also greatly improved. Moreover, BTO served as an effective substrate, preventing Ag from agglomerating and maximizing its antibacterial potential. In specific performance evaluations, ascorbic acid and methylene blue (MB) were used to study the photoelectrochemical sensing and photodegradation capabilities respectively, while Escherichia coli and Staphylococcus aureus were chosen as test organisms to assess the antibacterial properties. All in all, this research has yielded promising results.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.