Human Dermal Microvascular Arterial and Venous Blood Endothelial Cells and Their Use in Bioengineered Dermo-Epidermal Skin Substitutes.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dominic Rütsche, Monica Nanni, Phil Cheng, Nicolà Caflisch, Aizhan Tastanova, Céline Jenni, Mitchell P Levesque, Ueli Moehrlen, Agnes S Klar, Thomas Biedermann
{"title":"Human Dermal Microvascular Arterial and Venous Blood Endothelial Cells and Their Use in Bioengineered Dermo-Epidermal Skin Substitutes.","authors":"Dominic Rütsche, Monica Nanni, Phil Cheng, Nicolà Caflisch, Aizhan Tastanova, Céline Jenni, Mitchell P Levesque, Ueli Moehrlen, Agnes S Klar, Thomas Biedermann","doi":"10.1002/smtd.202401588","DOIUrl":null,"url":null,"abstract":"<p><p>The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin. Transcriptomic analysis reveals that arterial and venous endothelial cell markers NRP1 (neuropilin 1) and NR2F2 (nuclear receptor subfamily 2 group F member 2) are broadly expressed in fetal and juvenile skin. In contrast, expression of NRP1 and NR2F2 on the protein level is cell-type specific and is retained in 2D (2-dimensional) cultures in vitro. Finally, distinct arterial and venous capillaries are bioengineered in 3D (3-dimensional) hydrogels and rapid anastomosis is demonstrated with the host vasculature in vivo. In summary, the bioengineering of human arterial, venous, and lymphatic capillaries is established, hence paving the way for these cells to be used in regenerative medicine and future clinical applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401588"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401588","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin. Transcriptomic analysis reveals that arterial and venous endothelial cell markers NRP1 (neuropilin 1) and NR2F2 (nuclear receptor subfamily 2 group F member 2) are broadly expressed in fetal and juvenile skin. In contrast, expression of NRP1 and NR2F2 on the protein level is cell-type specific and is retained in 2D (2-dimensional) cultures in vitro. Finally, distinct arterial and venous capillaries are bioengineered in 3D (3-dimensional) hydrogels and rapid anastomosis is demonstrated with the host vasculature in vivo. In summary, the bioengineering of human arterial, venous, and lymphatic capillaries is established, hence paving the way for these cells to be used in regenerative medicine and future clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信