{"title":"Dual-Induced Directed Deposition Mechanism Based on Anionic Surfactants Enables Long Cycle Aqueous Zinc Ion Batteries.","authors":"Bing Wu, Tiantian Lu, Xiang Bai, Jiahui Zhang, Xinyue Chang, Lifeng Hou, Yinghui Wei, Qian Wang, Jiangfeng Ni","doi":"10.1002/smtd.202401838","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-ion battery has low cost, and environmental friendliness, emerging as a promising candidate for next-generation battery systems. However, it still suffers from a limited cycling life, caused by dendritic Zn growth and severe side reactions. Recent research highlights that the Zn (002) crystal plane exhibits superior anti-corrosive properties and a horizontal growth pattern. However, achieving uniform deposition on the Zn (002) plane remains a formidable challenge. Here, preferential rapid growth of the Zn (002) plane is manipulated via the dual-induced deposition effect of anionic surfactant (2-acrylamido-2-methylpropanesulfonic acid, AMPS), achieving Zn metal anode with ultralong cycle life. AMPS can preferentially adsorb on the Zn (100) and Zn (101) crystal planes, exposing the Zn (002) plane as a nucleation site for Zn<sup>2+</sup> ions, while the abundant presence of amide groups in AMPS can form fast ion channels, inducing rapid and uniform Zn deposition. Thus, even using 30 µm Zn foils, the symmetric cells can maintain a stable plating-stripping process over 5000 h, and Zn.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401838"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401838","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion battery has low cost, and environmental friendliness, emerging as a promising candidate for next-generation battery systems. However, it still suffers from a limited cycling life, caused by dendritic Zn growth and severe side reactions. Recent research highlights that the Zn (002) crystal plane exhibits superior anti-corrosive properties and a horizontal growth pattern. However, achieving uniform deposition on the Zn (002) plane remains a formidable challenge. Here, preferential rapid growth of the Zn (002) plane is manipulated via the dual-induced deposition effect of anionic surfactant (2-acrylamido-2-methylpropanesulfonic acid, AMPS), achieving Zn metal anode with ultralong cycle life. AMPS can preferentially adsorb on the Zn (100) and Zn (101) crystal planes, exposing the Zn (002) plane as a nucleation site for Zn2+ ions, while the abundant presence of amide groups in AMPS can form fast ion channels, inducing rapid and uniform Zn deposition. Thus, even using 30 µm Zn foils, the symmetric cells can maintain a stable plating-stripping process over 5000 h, and Zn.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.