Superstrong Lightweight Aerogel with Supercontinuous Layer by Surface Reaction

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianpei Zhou, Linbo He, Yu Zhen, Xiaolin Tai, Shun Dai, Kaijin Wu, Honghe Ding, Tianpu Xia, Xun Zhang, Xueru Cai, Fangzhou Jiang, Zhiqiang Zhu, Fangsheng Huang, Chen Li, Yaping Li, Junfa Zhu, Wangsheng Chu, Yue Lin, Yong Ni, Yi Xie, Changzheng Wu
{"title":"Superstrong Lightweight Aerogel with Supercontinuous Layer by Surface Reaction","authors":"Tianpei Zhou, Linbo He, Yu Zhen, Xiaolin Tai, Shun Dai, Kaijin Wu, Honghe Ding, Tianpu Xia, Xun Zhang, Xueru Cai, Fangzhou Jiang, Zhiqiang Zhu, Fangsheng Huang, Chen Li, Yaping Li, Junfa Zhu, Wangsheng Chu, Yue Lin, Yong Ni, Yi Xie, Changzheng Wu","doi":"10.1002/adma.202418083","DOIUrl":null,"url":null,"abstract":"Breaking the thermal, mechanical and lightweight performance limit of aerogels has pivotal significance on thermal protection, new energy utilization, high-temperature catalysis, structural engineering, and physics, but is severely limited by the serious discrete characteristics between grain boundary and nano-units interfaces. Herein, a thermodynamically driven surface reaction and confined crystallization process is reported to synthesize a centimeter-scale supercontinuous ZrO<sub>2</sub> nanolayer on ZrO<sub>2</sub>-SiO<sub>2</sub> fiber aerogel surface, which significantly improved its thermal and mechanical properties with density almost unchanged (≈26 mg cm<sup>−3</sup>). Systematic structure analysis confirms that the supercontinuous layer achieves a close connection between grains and fibers through Zr─O─Si bonds. The as-prepared aerogel exhibits record-breaking specific strength (≈84615 N m kg<sup>−1</sup>, can support up to ≈227 272 times aerogel mass) and dynamic impact resistance (withstanding impacts up to 500 times aerogel mass and up to 200 cycling stability at 80% strain). Besides, its temperature resistance has also been greatly optimized (400 °C enhancement, stability at 1500 °C). This work will provide a new perspective for exploring the limits of lightweight, high strength, and thermal properties of solid materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"25 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202418083","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Breaking the thermal, mechanical and lightweight performance limit of aerogels has pivotal significance on thermal protection, new energy utilization, high-temperature catalysis, structural engineering, and physics, but is severely limited by the serious discrete characteristics between grain boundary and nano-units interfaces. Herein, a thermodynamically driven surface reaction and confined crystallization process is reported to synthesize a centimeter-scale supercontinuous ZrO2 nanolayer on ZrO2-SiO2 fiber aerogel surface, which significantly improved its thermal and mechanical properties with density almost unchanged (≈26 mg cm−3). Systematic structure analysis confirms that the supercontinuous layer achieves a close connection between grains and fibers through Zr─O─Si bonds. The as-prepared aerogel exhibits record-breaking specific strength (≈84615 N m kg−1, can support up to ≈227 272 times aerogel mass) and dynamic impact resistance (withstanding impacts up to 500 times aerogel mass and up to 200 cycling stability at 80% strain). Besides, its temperature resistance has also been greatly optimized (400 °C enhancement, stability at 1500 °C). This work will provide a new perspective for exploring the limits of lightweight, high strength, and thermal properties of solid materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信