{"title":"Elucidating Mesostructural Effects on Thermal Conductivity for Enhanced Insulation Applications","authors":"Tingting Ren, Zhenxiang Chen, Jiahao Chen, Xirui Huang, Xingjin Li, Jie Zhang, Qianqian Lu, Chin-Te Hung, Tiancong Zhao, Min Wang, Dongyuan Zhao","doi":"10.1002/smll.202410872","DOIUrl":null,"url":null,"abstract":"Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks. This work elucidates the effects of ordered porous architecture on the thermal conductivity of mesoporous silica. Herein, two typical OMS, SBA-15 and SBA-16, characterized by well-defined porous structures with distinct spatial orientations are synthesized to study the relevance between structure and thermal conductivity. Compared to the 3D cubic mesoporous structure of SBA-16, the 2D hexagonal structure of SBA-15 exhibits anisotropic effects that restrict both solid and gaseous conduction, thereby providing better thermal insulating. Due to the influence of porosity, the thermal conductivity is found to decrease strongly with increasing pore size and decreasing wall thickness. Moreover, OMS composite aerogels with outstanding thermal insulation, mechanical performance, and hydrophobicity are fabricated through incorporating OMS into cellulose nanofibers (CNF). Consequently, this work contributes to a deeper understanding of heat transfer in OMS and provides an idea for designing OMS-based composite materials, thereby advancing their potential applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"24 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410872","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks. This work elucidates the effects of ordered porous architecture on the thermal conductivity of mesoporous silica. Herein, two typical OMS, SBA-15 and SBA-16, characterized by well-defined porous structures with distinct spatial orientations are synthesized to study the relevance between structure and thermal conductivity. Compared to the 3D cubic mesoporous structure of SBA-16, the 2D hexagonal structure of SBA-15 exhibits anisotropic effects that restrict both solid and gaseous conduction, thereby providing better thermal insulating. Due to the influence of porosity, the thermal conductivity is found to decrease strongly with increasing pore size and decreasing wall thickness. Moreover, OMS composite aerogels with outstanding thermal insulation, mechanical performance, and hydrophobicity are fabricated through incorporating OMS into cellulose nanofibers (CNF). Consequently, this work contributes to a deeper understanding of heat transfer in OMS and provides an idea for designing OMS-based composite materials, thereby advancing their potential applications.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.