Generalized Stomatal Optimization of Evolutionary Fitness Proxies for Predicting Plant Gas Exchange Under Drought, Heatwaves, and Elevated CO2

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Aaron Potkay, Antoine Cabon, Richard L. Peters, Patrick Fonti, Gerard Sapes, Anna Sala, Artur Stefanski, Ethan Butler, Raimundo Bermudez, Rebecca Montgomery, Peter B. Reich, Xue Feng
{"title":"Generalized Stomatal Optimization of Evolutionary Fitness Proxies for Predicting Plant Gas Exchange Under Drought, Heatwaves, and Elevated CO2","authors":"Aaron Potkay, Antoine Cabon, Richard L. Peters, Patrick Fonti, Gerard Sapes, Anna Sala, Artur Stefanski, Ethan Butler, Raimundo Bermudez, Rebecca Montgomery, Peter B. Reich, Xue Feng","doi":"10.1111/gcb.70049","DOIUrl":null,"url":null,"abstract":"Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or <i>constraint</i> of water. We move beyond this approach by developing a new, generalized optimality theory of stomatal conductance, optimizing any non-foliar proxy that requires water and carbon reserves, like growth, survival, and reproduction. We overcome two prior limitations. First, we reconcile the computational efficiency of <i>instantaneous</i> optimization with a more biologically meaningful <i>dynamic feedback</i> optimization over plant lifespans. Second, we incorporate <i>non-steady-state</i> physics in the optimization to account for the temporal changes in the water, carbon, and energy storage within a plant and its environment that occur over the timescales that stomata act, contrary to previous theories. Our optimal stomatal conductance compares well to observations from seedlings, saplings, and mature trees from field and greenhouse experiments. Our model predicts predispositions to mortality during the 2018 European drought and captures realistic responses to environmental cues, including the partial alleviation of heat stress by evaporative cooling and the negative effect of accumulating foliar soluble carbohydrates, promoting closure under elevated CO<sub>2</sub>. We advance stomatal optimality theory by incorporating generalized evolutionary fitness proxies and enhance its utility without compromising its realism, offering promise for future models to more realistically and accurately predict global carbon and water fluxes.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"10 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70049","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water. We move beyond this approach by developing a new, generalized optimality theory of stomatal conductance, optimizing any non-foliar proxy that requires water and carbon reserves, like growth, survival, and reproduction. We overcome two prior limitations. First, we reconcile the computational efficiency of instantaneous optimization with a more biologically meaningful dynamic feedback optimization over plant lifespans. Second, we incorporate non-steady-state physics in the optimization to account for the temporal changes in the water, carbon, and energy storage within a plant and its environment that occur over the timescales that stomata act, contrary to previous theories. Our optimal stomatal conductance compares well to observations from seedlings, saplings, and mature trees from field and greenhouse experiments. Our model predicts predispositions to mortality during the 2018 European drought and captures realistic responses to environmental cues, including the partial alleviation of heat stress by evaporative cooling and the negative effect of accumulating foliar soluble carbohydrates, promoting closure under elevated CO2. We advance stomatal optimality theory by incorporating generalized evolutionary fitness proxies and enhance its utility without compromising its realism, offering promise for future models to more realistically and accurately predict global carbon and water fluxes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信