Effects of salinity regulation strategies on the enrichment of polyhydroxyalkanoate (PHA) producing mixed cultures: Microbial community succession and metabolic mechanisms
{"title":"Effects of salinity regulation strategies on the enrichment of polyhydroxyalkanoate (PHA) producing mixed cultures: Microbial community succession and metabolic mechanisms","authors":"Zifan Wang, Zhiqiang Chen, Liang Zhu, Baozhen Liu, Shaojiao Liu, Haolong Huang, Qinxue Wen","doi":"10.1016/j.cej.2025.160001","DOIUrl":null,"url":null,"abstract":"The environmental impact of petroleum-based plastics has spurred interest in biodegradable alternatives like polyhydroxyalkanoate (PHA). Recycling PHA from saline organic wastewater through mixed culture (MC) processes represents a sustainable waste-to-resource approach. Although it is possible to enrich PHA producers by exploiting characteristics of high salinity that inhibit non-PHA producers, high salinity also inhibits PHA synthesis. Effectively enriching PHA producers under high-salinity conditions without compromising PHA synthesis remains a critical challenge. This study investigated the effects of two salinity regulation strategies, gradient salt addition and direct high salt application, on the enrichment stage of PHA producing MCs. The results show that gradient salinity increase fails to effectively select high-salinity tolerant PHA producers whereas direct high-salinity application strategy proves to be more effective. The enhancement mechanism of PHA synthesis under direct high-salinity application strategy is attributed to increased secretion of electron transfer-related substances in extracellular polymeric substances, along with improved microbial antioxidant capacity, ATP synthesis, electron transfer and quorum sensing, and sustained selective pressure promotes an increased relative abundance of PHA producers. The PHA producing MC enrichment strategy of direct high-salinity application emerges as a superior approach for resource recovery and PHA synthesis in high-salinity organic wastewater, offering a scalable pathway to enhance PHA production, utilize saline waste resources, and mitigate plastic pollution","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"40 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.160001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental impact of petroleum-based plastics has spurred interest in biodegradable alternatives like polyhydroxyalkanoate (PHA). Recycling PHA from saline organic wastewater through mixed culture (MC) processes represents a sustainable waste-to-resource approach. Although it is possible to enrich PHA producers by exploiting characteristics of high salinity that inhibit non-PHA producers, high salinity also inhibits PHA synthesis. Effectively enriching PHA producers under high-salinity conditions without compromising PHA synthesis remains a critical challenge. This study investigated the effects of two salinity regulation strategies, gradient salt addition and direct high salt application, on the enrichment stage of PHA producing MCs. The results show that gradient salinity increase fails to effectively select high-salinity tolerant PHA producers whereas direct high-salinity application strategy proves to be more effective. The enhancement mechanism of PHA synthesis under direct high-salinity application strategy is attributed to increased secretion of electron transfer-related substances in extracellular polymeric substances, along with improved microbial antioxidant capacity, ATP synthesis, electron transfer and quorum sensing, and sustained selective pressure promotes an increased relative abundance of PHA producers. The PHA producing MC enrichment strategy of direct high-salinity application emerges as a superior approach for resource recovery and PHA synthesis in high-salinity organic wastewater, offering a scalable pathway to enhance PHA production, utilize saline waste resources, and mitigate plastic pollution
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.